Time filter

Source Type

Hyderabad, India

Rawat N.,Rajendranagar | Naga N.C.,Rajendranagar | Meenakshi S.R.,Rajendranagar | Nair S.,International Center for Genetic Engineering and Biotechnology | Bentur J.S.,Rajendranagar
Functional and Integrative Genomics

The Asian rice gall midge [Orseolia oryzae (Wood-Mason)] is an important rice pest causing an annual average yield loss of about US 80 million in India. Rice varieties possess several discrete resistance (R) genes conferring resistance against the pest in two distinct ways, i.e., with (HR+ type) or without (HR- type) the expression of hypersensitive reaction (HR). The aim of the present work is to understand the molecular basis of compatible and incompatible (HR- type) rice gall midge interactions between the rice variety Kavya and the two gall midge biotypes: the virulent GMB4M and the avirulent GMB1 using transcriptional microarray gene expression analysis. A large number of differentially expressed genes (602genes in incompatible interaction and 1,330 genes in compatible interaction with at least twofold changes, p value <0.05) was obtained from the microarray analysis that could be grouped into six clusters based on their induction during both or either of the interactions. MapMan software was used for functional characterization of these genes into 13 categories (BINs). Realtime polymerase chain reaction validation of 26 genes selected through the analysis revealed four genes viz. NADPH oxidase, AtrbohF, cinnamoyl-CoA reductase, and von Willebrand factor type A domain containing protein coding genes to be significantly upregulated during the incompatible interaction. But most of the signature genes related to HR+ type resistance like salicylic acid pathway-related genes and disease resistance protein coding genes were downregulated. On the other hand, during the compatible interaction, genes related to primary metabolism and nutrient transport were upregulated and genes for defense and signaling were downregulated.We propose a hypothesis that HR- type of resistance in the rice variety Kavya against gall midge could be due to the constitutive expression of an R gene and a case of extreme resistance which is devoid of cell death. Compatible interaction, however, modulated a large number of differentially expressed transcripts to reprogram cell organization, cell remodeling, and relocation of nutrients through transport to support insect growth. © Springer-Verlag 2012. Source

Mallikarjuna Swamy B.P.,Rajendranagar | Mallikarjuna Swamy B.P.,International Rice Research Institute | Kaladhar K.,Rajendranagar | Ramesha M.S.,Rajendranagar | And 3 more authors.
Rice Science

Advanced backcross QTL analysis was used to identify QTLs for seven yield and yield-related traits in a BC2F2 population from the cross between a popular Oryza sativa cv Swarna and O. nivara IRGC81848. Transgressive segregants with more than 15% increased effect over Swarna were observed for all the traits except days to heading and days to 50% flowering. Thirty QTLs were detected for seven yield and yield-related traits using interval and composite interval mapping. Enhancing alleles at 13 (45%) of these QTLs were derived from O. nivara, and enhancing alleles at all the QTLs for stem diameter and rachis diameter were derived from O. nivara. Three stem diameter QTLs, two rachis diameter QTLs and one number of secondary branches QTL identified by both Interval and composite interval mapping contributed more than 15% of the total phenotypic variance. The QTL epistasis was significant for stem diameter and plot yield. The most significant QTLs qSD7.2, qSD8.1 and qSD9.1 for stem diameter, qRD9.1 for rachis diameter and qNSB1.1 for number of secondary branches are good targets to evaluate their use in marker-assisted selection. O. nivara is a good source of novel alleles for yield related traits and reveals major effect QTLs suitable for marker-assisted selection. © 2011 China National Rice Research Institute. Source

Discover hidden collaborations