Time filter

Source Type

Tartu, Estonia

Colaianna M.,University of Geneva | Ilmjarv S.,University of Geneva | Peterson H.,Quretec Ltd | Kern I.,University of Geneva | And 7 more authors.
Archives of Toxicology | Year: 2016

Identification of neurotoxic drugs and environmental chemicals is an important challenge. However, only few tools to address this topic are available. The aim of this study was to develop a neurotoxicity/developmental neurotoxicity (DNT) test system, using the pluripotent mouse embryonic stem cell line CGR8 (ESCs). The test system uses ESCs at two differentiation stages: undifferentiated ESCs and ESC-derived neurons. Under each condition, concentration–response curves were obtained for three parameters: activity of the tubulin alpha 1 promoter (typically activated in early neurons), activity of the elongation factor 1 alpha promoter (active in all cells), and total DNA content (proportional to the number of surviving cells). We tested 37 compounds from the ESNATS test battery, which includes polypeptide hormones, environmental pollutants (including methylmercury), and clinically used drugs (including valproic acid and tyrosine kinase inhibitors). Different classes of compounds showed distinct concentration–response profiles. Plotting of the lowest observed adverse effect concentrations (LOAEL) of the neuronal promoter activity against the general promoter activity or against cytotoxicity, allowed the differentiation between neurotoxic/DNT substances and non-neurotoxic controls. Reporter activity responses in neurons were more susceptible to neurotoxic compounds than the reporter activities in ESCs from which they were derived. To relate the effective/toxic concentrations found in our study to relevant in vivo concentrations, we used a reverse pharmacokinetic modeling approach for three exemplary compounds (teriflunomide, geldanamycin, abiraterone). The dual luminescence reporter assay described in this study allows high-throughput, and should be particularly useful for the prioritization of the neurotoxic potential of a large number of compounds. © 2016 The Author(s) Source

Altmae S.,Competence Center on Health Technologies | Altmae S.,University of Granada | Tamm-Rosenstein K.,Tallinn University of Technology | Esteban F.J.,University of Jaen | And 11 more authors.
Reproductive BioMedicine Online | Year: 2016

Little consensus has been reached on the best protocol for endometrial preparation for frozen embryo transfer (FET). It is not known how, and to what extent, hormone supplementation in artificial cycles influences endometrial preparation for embryo implantation at a molecular level, especially in patients who have experienced recurrent implantation failure. Transcriptome analysis of 15 endometrial biopsy samples at the time of embryo implantation was used to compare two different endometrial preparation protocols, natural versus artificial cycles, for FET in women who have experienced recurrent implantation failure compared with fertile women. IPA and DAVID were used for functional analyses of differentially expressed genes. The TRANSFAC database was used to identify oestrogen and progesterone response elements upstream of differentially expressed genes. Cluster analysis demonstrated that natural cycles are associated with a better endometrial receptivity transcriptome than artificial cycles. Artificial cycles seemed to have a stronger negative effect on expression of genes and pathways crucial for endometrial receptivity, including ESR2, FSHR, LEP, and several interleukins and matrix metalloproteinases. Significant overrepresentation of oestrogen response elements among the genes with deteriorated expression in artificial cycles (P < 0.001) was found; progesterone response elements predominated in genes with amended expression with artificial cycles (P = 0.0052). © 2016 Reproductive Healthcare Ltd. Source

Reimand J.,University of Tartu | Reimand J.,XEN LTD | Arak T.,University of Tartu | Vilo J.,University of Tartu | Vilo J.,Quretec Ltd
Nucleic Acids Research | Year: 2011

Functional interpretation of candidate gene lists is an essential task in modern biomedical research. Here, we present the 2011 update of g:Profiler (http://biit.cs.ut.ee/gprofiler/), a popular collection of web tools for functional analysis. g:GOSt and g:Cocoa combine comprehensive methods for interpreting gene lists, ordered lists and list collections in the context of biomedical ontologies, pathways, transcription factor and microRNA regulatory motifs and protein-protein interactions. Additional tools, namely the biomolecule ID mapping service (g:Convert), gene expression similarity searcher (g:Sorter) and gene homology searcher (g:Orth) provide numerous ways for further analysis and interpretation. In this update, we have implemented several features of interest to the community: (i) functional analysis of single nucleotide polymorphisms and other DNA polymorphisms is supported by chromosomal queries; (ii) network analysis identifies enriched protein-protein interaction modules in gene lists; (iii) functional analysis covers human disease genes; and (iv) improved statistics and filtering provide more concise results. g:Profiler is a regularly updated resource that is available for a wide range of species, including mammals, plants, fungi and insects. © 2011 The Author(s). Source

Hundahl C.A.,Copenhagen University | Luuk H.,Copenhagen University | Luuk H.,University of Tartu | Ilmjarv S.,University of Tartu | And 6 more authors.
PLoS ONE | Year: 2011

Background: Neuroglobin (Ngb), a neuron-specific globin that binds oxygen in vitro, has been proposed to play a key role in neuronal survival following hypoxic and ischemic insults in the brain. Here we address whether Ngb is required for neuronal survival following acute and prolonged hypoxia in mice genetically Ngb-deficient (Ngb-null). Further, to evaluate whether the lack of Ngb has an effect on hypoxia-dependent gene regulation, we performed a transcriptome-wide analysis of differential gene expression using Affymetrix Mouse Gene 1.0 ST arrays. Differential expression was estimated by a novel data analysis approach, which applies non-parametric statistical inference directly to probe level measurements. Principal Findings: Ngb-null mice were born in expected ratios and were normal in overt appearance, home-cage behavior, reproduction and longevity. Ngb deficiency had no effect on the number of neurons, which stained positive for surrogate markers of endogenous Ngb-expressing neurons in the wild-type (wt) and Ngb-null mice after 48 hours hypoxia. However, an exacerbated hypoxia-dependent increase in the expression of c-FOS protein, an immediate early transcription factor reflecting neuronal activation, and increased expression of Hif1A mRNA were observed in Ngb-null mice. Large-scale gene expression analysis identified differential expression of the glycolytic pathway genes after acute hypoxia in Ngb-null mice, but not in the wts. Extensive hypoxia-dependent regulation of chromatin remodeling, mRNA processing and energy metabolism pathways was apparent in both genotypes. Significance: According to these results, it appears unlikely that the loss of Ngb affects neuronal viability during hypoxia in vivo. Instead, Ngb-deficiency appears to enhance the hypoxia-dependent response of Hif1A and c-FOS protein while also altering the transcriptional regulation of the glycolytic pathway. Bioinformatic analysis of differential gene expression yielded novel predictions suggesting that chromatin remodeling and mRNA metabolism are among the key regulatory mechanisms when adapting to prolonged hypoxia. © 2011 Hundahl et al. Source

Jung M.,Max Planck Institute for Molecular Genetics | Peterson H.,University of Tartu | Peterson H.,Quretec Ltd | Chavez L.,Max Planck Institute for Molecular Genetics | And 5 more authors.
PLoS ONE | Year: 2010

It is essential to understand the network of transcription factors controlling self-renewal of human embryonic stem cells (ESCs) and human embryonal carcinoma cells (ECs) if we are to exploit these cells in regenerative medicine regimes. Correlating gene expression levels after RNAi-based ablation of OCT4 function with its downstream targets enables a better prediction of motif-specific driven expression modules pertinent for self-renewal and differentiation of embryonic stem cells and induced pluripotent stem cells. We initially identified putative direct downstream targets of OCT4 by employing CHIPon- chip analysis. A comparison of three peak analysis programs revealed a refined list of OCT4 targets in the human EC cell line NCCIT, this list was then compared to previously published OCT4 CHIP-on-chip datasets derived from both ES and EC cells. We have verified an enriched POU-motif, discovered by a de novo approach, thus enabling us to define six distinct modules of OCT4 binding and regulation of its target genes. A selection of these targets has been validated, like NANOG, which harbours the evolutionarily conserved OCT4-SOX2 binding motif within its proximal promoter. Other validated targets, which do not harbour the classical HMG motif are USP44 and GADD45G, a key regulator of the cell cycle. Overexpression of GADD45G in NCCIT cells resulted in an enrichment and up-regulation of genes associated with the cell cycle (CDKN1B, CDKN1C, CDK6 and MAPK4) and developmental processes (BMP4, HAND1, EOMES, ID2, GATA4, GATA5, ISL1 and MSX1). A comparison of positively regulated OCT4 targets common to EC and ES cells identified genes such as NANOG, PHC1, USP44, SOX2, PHF17 and OCT4, thus further confirming their universal role in maintaining self-renewal in both cell types. Finally we have created a user-friendly database (http://biit.cs.ut.ee/escd/), integrating all OCT4 and stem cell related datasets in both human and mouse ES and EC cells. In the current era of systems biology driven research, we envisage that our integrated embryonic stem cell database will prove beneficial to the booming field of ES, iPS and cancer research © 2010 Jung et al. Source

Discover hidden collaborations