Brisbane, Australia

Queensland University of Technology is a research university in Brisbane, Australia. QUT is located on three campuses in the Brisbane area: Gardens Point, Kelvin Grove, and Caboolture. The university has approximately 35,000 undergraduate students and 5,000 post graduate students, of which 6,000 are international students. It has over 4 000 staff members, and an annual budget of more than AU$750 million.QUT ranks within the top 10 Australian Universities and the upper 3 per cent world-wide. QUT has been ranked as Australia's best university under 50 years of age by the Times Higher Education Top 100, and ranks 26th globally in that category. The university in its current form was founded 1989, when the then Queensland Institute of Technology merged with the Brisbane College of Advanced Education. Wikipedia.


Time filter

Source Type

Patent
Bivacor Pty Ltd and Queensland University of Technology | Date: 2015-01-13

A cannula including a hollow cannula body having first and second tubular end portions, a collapsible section interconnecting the end portions, the collapsible section including a plurality of circumferentially spaced arms extending between the end portions, wherein in an extended configuration the arms are substantially aligned with the first and second end portions and in a collapsed configuration the arms deform to extend radially outwardly and a flange extending radially outwardly from the first end portion, so that the arms and flange are spaced apart when the cannula body is in the collapsed configuration, thereby allowing tissue to be sandwiched therebetween to thereby effect a seal between the cannula and the tissue so that the cannula provides an opening through the tissue.


Srinivasan M.V.,Queensland University of Technology
Annual Review of Entomology | Year: 2010

Among the so-called simpler organisms, the honey bee is one of the few examples of an animal with a highly evolved social structure, a rich behavioral repertoire, an exquisite navigational system, an elaborate communication system, and an extraordinary ability to learn colors, shapes, fragrances, and navigational routes quickly and accurately. This review examines vision and complex visually mediated behavior in the honey bee, outlining the structure and function of the compound eyes, the perception and discrimination of colors and shapes, the learning of complex tasks, the ability to establish and exploit complex associations, and the capacity to abstract general principles from a task and apply them to tackle novel situations. All this is accomplished by a brain that weighs less than a milligram and carries fewer than a million neurons, thus making the bee a promising subject in which to study a variety of fundamental questions about behavior and brain function. © 2010 by Annual Reviews All rights reserved.


Schroeter R.,Queensland University of Technology
Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW | Year: 2012

Local governments struggle to engage time poor and seemingly apathetic citizens, as well as the city's young digital natives, the digital locals. This project aims at providing a lightweight, technological contribution towards removing the hierarchy between those who build the city and those who use it. We aim to narrow this gap by enhancing people's experience of physical spaces with digital, civic technologies that are directly accessible within that space. This paper presents the findings of a design trial allowing users to interact with a public screen via their mobile phones. The screen facilitated a feedback platform about a concrete urban planning project by promoting specific questions and encouraging direct, in-situ, real-time responses via SMS and twitter. This new mechanism offers additional benefits for civic participation as it gives voice to residents who otherwise would not be heard. It also promotes a positive attitude towards local governments and gathers information different from more traditional public engagement tools. © 2012 ACM.


Milford M.,Queensland University of Technology
International Journal of Robotics Research | Year: 2013

In this paper we use the algorithm SeqSLAM to address the question, how little and what quality of visual information is needed to localize along a familiar route? We conduct a comprehensive investigation of place recognition performance on seven datasets while varying image resolution (primarily 1 to 512 pixel images), pixel bit depth, field of view, motion blur, image compression and matching sequence length. Results confirm that place recognition using single images or short image sequences is poor, but improves to match or exceed current benchmarks as the matching sequence length increases. We then present place recognition results from two experiments where low-quality imagery is directly caused by sensor limitations; in one, place recognition is achieved along an unlit mountain road by using noisy, long-exposure blurred images, and in the other, two single pixel light sensors are used to localize in an indoor environment. We also show failure modes caused by pose variance and sequence aliasing, and discuss ways in which they may be overcome. By showing how place recognition along a route is feasible even with severely degraded image sequences, we hope to provoke a re-examination of how we develop and test future localization and mapping systems. © The Author(s) 2013.


Read S.A.,Queensland University of Technology
Investigative ophthalmology & visual science | Year: 2013

We examined choroidal thickness (ChT) and its spatial distribution across the posterior pole in pediatric subjects with normal ocular health and minimal refractive error. ChT was assessed using spectral domain optical coherence tomography (OCT) in 194 children aged 4 to 12 years, with spherical equivalent refractive errors between +1.25 and -0.50 diopters sphere (DS). A series of OCT scans were collected, imaging the choroid along 4 radial scan lines centered on the fovea (each separated by 45°). Frame averaging was used to reduce noise and enhance chorioscleral junction visibility. The transverse scale of each scan was corrected to account for magnification effects associated with axial length. Two independent masked observers segmented the OCT images manually to determine ChT at foveal center, and averaged across a series of perifoveal zones over the central 5 mm. The average subfoveal ChT was 330 ± 65 μm (range, 189-538 μm), and was influenced significantly by age (P = 0.04). The ChT of the 4- to 6-year-old age group (312 ± 62 μm) was significantly thinner compared to the 7- to 9-year-olds (337 ± 65 μm, P < 0.05) and bordered on significance compared to the 10- to 12-year-olds (341 ± 61 μm, P = 0.08). ChT also exhibited significant variation across the posterior pole, being thicker in more central regions. The choroid was thinner nasally and inferiorly compared to temporally and superiorly. Multiple regression analysis revealed age, axial length, and anterior chamber depth were associated significantly with subfoveal ChT (P < 0.001). ChT increases significantly from early childhood to adolescence. This appears to be a normal feature of childhood eye growth.


Croll T.I.,Queensland University of Technology
Acta Crystallographica Section D: Biological Crystallography | Year: 2015

Cis-peptide bonds (with the exception of X-Pro) are exceedingly rare in native protein structures, yet a check for these is not currently included in the standard workflow for some common crystallography packages nor in the automated quality checks that are applied during submission to the Protein Data Bank. This appears to be leading to a growing rate of inclusion of spurious cis-peptide bonds in low-resolution structures both in absolute terms and as a fraction of solved residues. Most concerningly, it is possible for structures to contain very large numbers (>1%) of spurious cis-peptide bonds while still achieving excellent quality reports from MolProbity, leading to concerns that ignoring such errors is allowing software to overfit maps without producing telltale errors in, for example, the Ramachandran plot. © 2015 International Union of Crystallography.


Cameron S.L.,Queensland University of Technology
Annual Review of Entomology | Year: 2014

The mitochondrial (mt) genome is, to date, the most extensively studied genomic system in insects, outnumbering nuclear genomes tenfold and representing all orders versus very few. Phylogenomic analysis methods have been tested extensively, identifying compositional bias and rate variation, both within and between lineages, as the principal issues confronting accurate analyses. Major studies at both inter- and intraordinal levels have contributed to our understanding of phylogenetic relationships within many groups. Genome rearrangements are an additional data type for defining relationships, with rearrangement synapomorphies identified across multiple orders and at many different taxonomic levels. Hymenoptera and Psocodea have greatly elevated rates of rearrangement offering both opportunities and pitfalls for identifying rearrangement synapomorphies in each group. Finally, insects are model systems for studying aberrant mt genomes, including truncated tRNAs and multichromosomal genomes. Greater integration of nuclear and mt genomic studies is necessary to further our understanding of insect genomic evolution. © Copyright ©2014 by Annual Reviews. All rights reserved.


Rakic A.D.,Queensland University of Technology
Optics Express | Year: 2012

Self-mixing laser sensors require few components and can be used to measure velocity. The self-mixing laser sensor consists of a laser emitting a beam focused onto a rough target that scatters the beam with some of the emission re-entering the laser cavity. This 'self-mixing' causes measurable interferometric modulation of the laser output power that leads to a periodic Doppler signal spectrum with a peak at a frequency proportional to the velocity of the target. Scattering of the laser emission from a rough surface also leads to a speckle effect that modulates the Doppler signal causing broadening of the signal spectrum adding uncertainty to the velocity measurement. This article analyzes the speckle effect to provide an analytic equation to predict the spectral broadening of an acquired self-mixing signal and compares the predicted broadening to experimental results. To the best of our knowledgethe model proposed in this article is the first model that has successfully predicted speckle broadening in a self-mixing velocimetry sensor in a quantitative manner. It was found that the beam spot size on the target and the target speed affect the resulting spectral broadening caused by speckle. It was also found that the broadening is only weakly dependent on target angle. The experimental broadening was consistently greater than the theoretical speckle broadening due to other effects that also contribute to the total broadening. © 2012 Optical Society of America.


Srinivasan M.V.,Queensland University of Technology
Physiological Reviews | Year: 2011

Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: NMP.2012.2.2-1 | Award Amount: 13.20M | Year: 2013

Degeneration of cartilage is a major cause of chronic pain, lost mobility and reduced quality of life for millions of European citizens. From a clinical point of view treatment to achieve cartilage regeneration (hyaline) and not only repair (fibrous) remains a great challenge. No clinical therapy is available that leads to healing of cartilage defects. Current cartilage implants cannot establish the hierarchical tissue organisation that appears critical for normal cartilage function. We hypothesise that a biomimetic zonal organisation is critical for implants to achieve cartilage regeneration. HydroZONES represents an interdisciplinary consortium that adopts a strategy to regenerate, rather than repair, articular cartilage based on the tissues zonal structure and function. HydroZONES will use advanced bioprinting technology for fabrication of 3D biofunctional hydrogel constructs, eventually mechanically reinforced by degradable polymer scaffolds, as biomimetic reconstitution of the zonal organisation of natural cartilage. Constructs will be optimized for cell-free application and also for combination with chrondrogenic cells (chondrocytes and/or MSC). Stringent in vitro and long term in vivo testing of the constructs will be employed that will yield a new clinical standard for pre-clinical testing. Cutting edge 3D tissue models and bioreactor technology will be used together with in silico modelling to develop a predictive in vitro assay and test system that will be validated against the in vivo data. Installation of a quality and regulatory affair management system, GMP production, accredited in vitro testing and involvement of clinical partners and companies with experience in clinical trials ensures that the best performing construct will be brought into an optimal position for entering clinical trials at project end. HydroZONES will thus advance the European Union as world leader in the field of joint cartilage regeneration.

Loading Queensland University of Technology collaborators
Loading Queensland University of Technology collaborators