Time filter

Source Type

Kingston, Canada

Queen's University at Kingston is a public research university located in Kingston, Ontario, Canada. Founded on 16 October 1841 via a royal charter issued by Queen Victoria, the university predates the founding of Canada by 26 years Wikipedia.

Jessop P.G.,Queens University
Green Chemistry | Year: 2011

Academic research in the area of green solvents is focused on neither the industries that use solvents most nor the types of solvents that the research community believes have the best hope of reducing solvent-related environmental damage. Those of us who are primarily motivated by a desire to reduce such damage would do well to look at the major uses of solvents, to determine the problems that currently make those applications less-than-green and focus our research efforts on potential solutions to those problems. As a contribution to such efforts, I present four grand challenges in the field of green solvents: finding a sufficient range of green solvents, recognizing whether a solvent is actually green, finding an easily-removable polar aprotic solvent and eliminating distillation. © 2011 The Royal Society of Chemistry. Source

Mulligan L.M.,Queens University
Nature Reviews Cancer | Year: 2014

The RET receptor tyrosine kinase is crucial for normal development but also contributes to pathologies that reflect both the loss and the gain of RET function. Activation of RET occurs via oncogenic mutations in familial and sporadic cancers-most notably, those of the thyroid and the lung. RET has also recently been implicated in the progression of breast and pancreatic tumours, among others, which makes it an attractive target for small-molecule kinase inhibitors as therapeutics. However, the complex roles of RET in homeostasis and survival of neural lineages and in tumour-associated inflammation might also suggest potential long-term pitfalls of broadly targeting RET. © 2014 Macmillan Publishers Limited. Source

Davies P.L.,Queens University
Trends in Biochemical Sciences | Year: 2014

Antifreeze proteins (AFPs) were discovered in marine fishes that need protection from freezing. These ice-binding proteins (IBPs) are widespread across biological kingdoms, and their functions include freeze tolerance and ice adhesion. Consistent with recent independent evolution, AFPs have remarkably diverse folds that rely heavily on hydrogen- and disulfide-bonding. AFP ice-binding sites are typically flat, extensive, relatively hydrophobic, and are thought to organize water into an ice-like arrangement that merges and freezes with the quasi-liquid layer next to the ice lattice. In this article, the roles, properties, and structure-function interactions of IBPs are reviewed, and their relationship to ice nucleation proteins, which promote freezing at high subzero temperatures, is explored. © 2014 Elsevier Ltd. Source

Rowe R.K.,Queens University
Canadian Geotechnical Journal | Year: 2012

The factors that may affect short-term leakage through composite liners are examined. It is shown that the leakage through composite liners is only a very small fraction of that expected for either a geomembrane (GM) or clay liner (CL) alone. However, the calculated leakage through holes in a GM in direct contact with a clay liner is typically substantially smaller than that actually observed in the field. It is shown that calculated leakage taking account of typical connected wrinkle lengths observed in the field explains the observed field leakage through composite liners. Provided that care is taken to avoid excessive connected wrinkle lengths, the leakage through composite liners is very small compared to a typical GM or CL alone. It is shown that the leakage through composite liners with a geosynthetic clay liner (GCL) is typically much less than for composite liners with a compacted clay liner (CCL). Finally, factors that will affect long-term leakage through composite liners are discussed. It is concluded that composite liners have performed extremely well in field applications for a couple of decades and that recent research both helps understand why they have worked so well and provides new insight into issues that need to be considered to ensure excellent long-term liner performance of composite liners - especially for applications where the liner temperature can exceed about 35 °C. Source

Poole K.,Queens University
Trends in Microbiology | Year: 2012

Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations. © 2012 Elsevier Ltd. Source

Discover hidden collaborations