Time filter

Source Type

Chondronikola M.,Shriners Hospitals for Children | Chondronikola M.,University of Texas Medical Branch | Chondronikola M.,Harokopio University | Volpi E.,University of Texas Medical Branch | And 22 more authors.
Cell Metabolism | Year: 2016

Recent studies suggest that brown adipose tissue (BAT) plays a role in energy and glucose metabolism in humans. However, the physiological significance of human BAT in lipid metabolism remains unknown. We studied 16 overweight/obese men during prolonged, non-shivering cold and thermoneutral conditions using stable isotopic tracer methodologies in conjunction with hyperinsulinemic-euglycemic clamps and BAT and white adipose tissue (WAT) biopsies. BAT volume was significantly associated with increased whole-body lipolysis, triglyceride-free fatty acid (FFA) cycling, FFA oxidation, and adipose tissue insulin sensitivity. Functional analysis of BAT and WAT demonstrated the greater thermogenic capacity of BAT compared to WAT, while molecular analysis revealed a cold-induced upregulation of genes involved in lipid metabolism only in BAT. The accelerated mobilization and oxidation of lipids upon BAT activation supports a putative role for BAT in the regulation of lipid metabolism in humans. © 2016 Elsevier Inc.


PubMed | University of California at San Francisco, Quebec Heart and Lung Research Institute Center, University of Texas Medical Branch and Harokopio University
Type: Journal Article | Journal: Cell metabolism | Year: 2016

Recent studies suggest that brown adipose tissue (BAT) plays a role in energy and glucose metabolism in humans. However, the physiological significance of human BAT in lipid metabolism remains unknown. We studied 16 overweight/obese men during prolonged, non-shivering cold and thermoneutral conditions using stable isotopic tracer methodologies inconjunction with hyperinsulinemic-euglycemic clamps and BAT and white adipose tissue (WAT) biopsies. BAT volume was significantly associated with increased whole-body lipolysis, triglyceride-free fatty acid (FFA) cycling, FFA oxidation, and adipose tissue insulin sensitivity. Functional analysis of BAT and WAT demonstrated the greater thermogenic capacity of BAT compared to WAT, while molecular analysis revealed a cold-induced upregulation of genes involved in lipid metabolism only in BAT. Theaccelerated mobilization and oxidation of lipids upon BAT activation supports a putative role for BAT in the regulation of lipid metabolism in humans.


Chondronikola M.,Shriners Hospital for Children | Chondronikola M.,University of Texas Medical Branch | Chondronikola M.,Harokopio University | Volpi E.,University of Texas Medical Branch | And 24 more authors.
Diabetes | Year: 2014

Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT+) men and five BAT-negative (BAT-) men under thermoneutral conditions and after prolonged (5-8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT+ group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans. © 2014 by the American Diabetes Association.


Chondronikola M.,Shriners Hospitals for Children GalvestonTX | Chondronikola M.,University of Texas Medical Branch | Chondronikola M.,Harokopio University | Volpi E.,University of Texas Medical Branch | And 18 more authors.
Frontiers in Physiology | Year: 2016

Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT-) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT- group only (-0.34°C, 95% CI: -0.6 to -0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT- subjects (BAT+ vs. BAT-, 0.43°C, 95% CI: 0.20-0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT- group, BAT+ subjects tolerated a lower ambient temperature (BAT-: 20.6 ± 0.3°C vs. BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. © 2016 Chondronikola, Volpi, Børsheim, Chao, Porter, Annamalai, Yfanti, Labbe, Hurren, Malagaris, Cesani and Sidossis.


Chondronikola M.,Harokopio University | Volpi E.,University of Texas Medical Branch | Borsheim E.,University of Texas Medical Branch | Porter C.,University of Texas Medical Branch | And 12 more authors.
Diabetes | Year: 2014

Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT(+)) men and five BAT-negative (BAT(-)) men under thermoneutral conditions and after prolonged (5-8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT(+) group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

Loading Quebec Heart and Lung Research Institute Center collaborators
Loading Quebec Heart and Lung Research Institute Center collaborators