Cambridge, MA, United States
Cambridge, MA, United States

Time filter

Source Type

The present invention relates to systems and methods for detecting analyte molecules or particles in a fluid sample and in some cases, determining a measure of the concentration of the molecules or particles in the fluid sample. Methods of the present invention may comprise immobilizing a plurality of analyte molecules or particles with respect to a plurality of capture objects. At least a portion of the plurality of capture objects may be spatially separated into a plurality of locations. A measure of the concentration of analyte molecules in a fluid sample may be determined, at least in part, on the number of reaction vessels comprising an analyte molecule immobilized with respect to a capture object. In some cases, the assay may additionally comprise steps including binding ligands, precursor labeling agents, and/or enzymatic components.


The present invention generally relates, in some embodiments, to methods of determining a patients prognosis for recurrence of prostate cancer and/or determining a course of treatment for prostate cancer following a radical prostatectomy.


The present invention relates to systems and methods for detecting analyte molecules or particles in a fluid sample and in some cases, determining a measure of the concentration of the molecules or particles in the fluid sample. Methods of the present invention may comprise immobilizing a plurality of analyte molecules or particles with respect to a plurality of capture objects. At least a portion of the plurality of capture objects may be spatially separated into a plurality of locations. A measure of the concentration of analyte molecules in a fluid sample may be determined, at least in part, on the number of reaction vessels comprising an analyte molecule immobilized with respect to a capture object. In some cases, the assay may additionally comprise steps including binding ligands, precursor labeling agents, and/or enzymatic components.


Described herein are methods and systems for detecting DNA or RNA using single molecules array or other techniques. DNA or RNA from the sample may be fragmented and exposed to a first type of binding ligand and a second type of binding ligand that comprise nucleic acid sequences complimentary at least a portion of a sequence contained in the target DNA or RNA. At least a portion of the fragmented DNA or RNA associates with at least one of the first type of binding ligand and/or the second type of binding ligand, wherein the first type of binding ligand and second type of binding ligand comprises nucleic acid sequences complimentary to a different portions of a sequence contained in the DNA or RNA. A portion of the sample exposed to the binding ligands is analyzed to determine the number of fragmented DNA or RNA sequences.


Described herein are systems and methods for extending the dynamic range of assay methods and systems used for determining the concentration of analyte molecules or particles in a fluid sample. In some embodiments, a method comprises spatially segregating a plurality of analyte molecules in a fluid sample into a plurality of locations. At least a portion of the locations may be addressed to determine the percentage of said locations containing at least one analyte molecule. Based at least in part on the percentage, a measure of the concentration of analyte molecules in the fluid sample may be determined using an analog, intensity-based detection/analysis method/system and/or a digital detection/analysis method/system. In some cases, the assay may comprise the use of a plurality of capture objects.


Described herein are systems and methods for extending the dynamic range of assay methods and systems used for determining the concentration of analyte molecules or particles in a fluid sample. In some embodiments, a method comprises spatially segregating a plurality of analyte molecules in a fluid sample into a plurality of locations. At least a portion of the locations may be addressed to determine the percentage of said locations containing at least one analyte molecule. Based at least in part on the percentage, a measure of the concentration of analyte molecules in the fluid sample may be determined using an analog, intensity-based detection/analysis method/system and/or a digital detection/analysis method/system. In some cases, the assay may comprise the use of a plurality of capture objects.


The present invention relates to systems and methods for detecting analyte molecules or particles in a fluid sample and in some cases, determining a measure of the concentration of the molecules or particles in the fluid sample. Methods of the present invention may comprise immobilizing a plurality of analyte molecules or particles to form a plurality of complexes, releasing at least a portion of some of the plurality of complexes, determining at least a portion of the plurality of complexes released, and determining a measure of the concentration of the analyte molecules or particles in a fluid sample.


The present invention, in some embodiments, generally relates to methods of determining a treatment protocol for and/or a prognosis of a patients recovery from a brain injury. In some embodiments, the brain injury results from a hypoxic event. In some embodiments, methods are provided for determining a measure of the concentration of tau protein in a patient sample containing or suspected of containing tau protein.


The present invention generally relates, in some embodiments, to methods of determining a patients prognosis for recurrence of prostate cancer and/or determining a course of treatment for prostate cancer following a radical prostatectomy.


Described herein are methods, materials, and kits for covalently associating molecular species with a surface of an object. The subject matter of the present invention involves, in some cases, interrelated products, alternative solutions to a particular problem, and/or a plurality of different uses of one or more systems and/or articles. In some aspects, methods are provided. In some embodiments, a method for covalently associating a molecular species with a surface comprises exposing an object with a surface comprising a plurality of functional groups to a first type of molecular species.

Loading Quanterix collaborators
Loading Quanterix collaborators