Entity

Time filter

Source Type

Newark, DE, United States

Solon E.G.,QPS LLC
Cell and Tissue Research | Year: 2015

The use of radiolabeled drug compounds offers the most efficient way to quantify the amount of drug and/or drug-derived metabolites in biological samples. Autoradiography is a technique using X- ray film, phosphor imaging plates, beta imaging systems, or photo-nuclear emulsion to visualize molecules or fragments of molecules that have been radioactively labeled, and it has been used to quantify and localize drugs in tissues and cells for decades. Quantitative whole-body autoradiography or autoradioluminography (QWBA) using phosphor imaging technology has revolutionized the conduct of drug distribution studies by providing high resolution images of the spatial distribution and matching tissue concentrations of drug-related radioactivity throughout the body of laboratory animals. This provides tissue-specific pharmacokinetic (PK) compartmental analysis which has been useful in toxicology, pharmacology, and drug disposition/patterns, and to predict human exposure to drugs and metabolites, and also radioactivity, when a human radiolabeled drug study is necessary. Microautoradiography (MARG) is another autoradiographic technique that qualitatively resolves the localization of radiolabeled compounds to the cellular level in a histological preparation. There are several examples in the literature of investigators attempting to obtain drug concentration data from MARG samples; however, there are technical issues which make that problematic. These issues will be discussed. This review will present a synopsis of both techniques and examples of how they have been used for drug research in recent years. © 2015, Springer-Verlag Berlin Heidelberg. Source


Lacy S.,Exelixis | Hsu B.,Exelixis | Miles D.,Genentech | Aftab D.,Exelixis | And 2 more authors.
Drug Metabolism and Disposition | Year: 2015

Metabolism and excretion of cabozantinib, an oral inhibitor of receptor tyrosine kinases, was studied in 8 healthy male volunteers after a single oral dose of 175 mg cabozantinib L-malate containing 14C-cabozantinib (100 μCi/subject). Total mean radioactivity recovery within 48 days was 81.09%; radioactivity was eliminated in feces (53.79%) and urine (27.29%). Cabozantinib was extensively metabolized with 17 individual metabolites identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in plasma, urine, and feces. Relative plasma radioactivity exposures (analyte AUC0-t/total AUC0-t for cabozantinib+major metabolites) were 27.2, 25.2, 32.3, 7, and 6% for cabozantinib and major metabolites monohydroxy sulfate (EXEL-1646), 6-desmethyl amide cleavage product sulfate (EXEL-1644), N-oxide (EXEL-5162), and amide cleavage product (EXEL-5366), respectively. Comparable relative plasma exposures determined by LC-MS/MS analysis were 32.4, 13.8, 45.9, 4.9, and 3.1%, respectively. These major metabolites each possess in vitro inhibition potencies ≤1/10th of parent cabozantinib against the targeted kinases MET, RET, and VEGFR2/KDR. In an in vitro cytochrome P450 (CYP) panel, cabozantinib and EXEL-1644 both inhibited most potently CYP2C8 (Kiapp = 4.6 and 1.1 μM, respectively). In an in vitro drug transporter panel, cabozantinib inhibited most potently MATE1 and MATE2-K (IC50 = 5.94 and 3.12 μM, respectively) and was a MRP2 substrate; EXEL-1644 inhibited most potently OAT1, OAT3, OATP1B1, MATE1, and OATP1B3 (IC50 = 4.3, 4.3, 6.1, 16.7, and 20.6 μM, respectively) and was a substrate of MRP2, OAT3, OATP1B1, OATP1B3, and possibly P-gp. Therefore, cabozantinib appears to be the primary pharmacologically active circulating analyte, whereas both cabozantinib and EXEL-1644 may represent potential for drugdrug interactions. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics. Source


Solon E.G.,QPS LLC | Schweitzer A.,Novartis | Stoeckli M.,Novartis | Prideaux B.,Novartis
AAPS Journal | Year: 2010

Whole-body autoradiography ((WBA) or quantitative WBA (QWBA)), microautoradiography (MARG), matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI), and secondary ion mass spectrometric imaging (SIMS-MSI) are high-resolution, molecular imaging techniques used to study the tissue distribution of radiolabeled and nonlabeled compounds in ex vivo, in situ biological samples. WBA, which is the imaging of the whole-body of lab animals, and/or their organ systems; and MARG, which provides information on the localization of radioactivity in histological preparations and at the cellular level, are used to support drug discovery and development efforts. These studies enable the conduct of human radiolabeled metabolite studies and have provided pharmaceutical scientists with a high resolution and quantitative method of accessing tissue distribution. MALDI-MSI is a mass spectrometric imaging technique capable of label-free and simultaneous determination of the identity and distribution of xenobiotics and their metabolites as well as endogenous substances in biological samples. This makes it an interesting extension to WBA and MARG, eliminating the need for radiochemistry and providing molecular specific information. SIMS-MSI offers a complementary method to MALDI-MSI for the acquisition of images with higher spatial resolution directly from biological specimens. Although traditionally used for the analysis of surface films and polymers, SIMS has been used successfully for the study of biological tissues and cell types, thus enabling the acquisition of images at submicrometer resolution with a minimum of samples preparation. © 2009 American Association of Pharmaceutical Scientists. Source


1. GTx-024, a novel selective androgen receptor modulator, is currently being investigated as an oral treatment for muscle wasting disorders associated with cancer and other chronic conditions. 2. Absorption of GTx-024 was rapid and complete, with high oral bioavailability. A wide tissue distribution of [ 14C]GTx-024 derived radioactivity was observed. [14C]GTx- 024-derived radioactivity had a moderate plasma clearance (117.7 and 74.5mL/h/kg) and mean elimination half-life of 0.6h and 16.4h in male and female rats, respectively. 3. Fecal excretion was the predominant route of elimination, with ∼70% of total radioactivity recovered in feces and 21-25% in urine within 48h. Feces of intact rats contained primarily unchanged [ 14C]GTx-024 (49.3-64.6%). Metabolites were identified in urine and feces resulting from oxidation of the cyanophenol ring (M8, 17.6%), hydrolysis and/or further conjugation of the amide moiety (M3, 8-12%) and the cyanophenol ring (M4, 1.3-1.5%), and glucuronidation of [14C]GTx-024 at the tertiary alcohol (M6, 3.5-3.7%). There was no quantifiable metabolite in plasma. 4. In summary, in the rat GTx-024 is completely absorbed, widely distributed, biotransformed through several metabolic pathways, and eliminated in feces primarily as an unchanged drug. © 2013 Informa UK Ltd. Source


Xue Y.-J.,Celgene | Gao H.,Vertex Pharmaceuticals | Ji Q.C.,Bristol Myers Squibb | Lam Z.,QPS LLC | And 5 more authors.
Bioanalysis | Year: 2012

Distribution of drugs into tissues is an important determinant of the overall PK and PD profile. Thus, bioanalysis of drugs and their metabolites in tissues can play an important role in understanding the pharmacological and toxicological properties of new drug candidates. Unlike liquid matrices, bioanalysis in tissues offers unique challenges such as proper tissue sampling, appropriate tissue sample preparation, efficient extraction of the analytes from the tissue homogenates, and demonstration of stability and recovery of analytes in intact tissues. This article provides a systematic review of tissue sample analysis for small molecules using LC-MS/MS. The authors provide rationale for tissue sample analysis, and discuss strategies for method development, method qualification or validation, and sample analysis. Unique aspects of method development and qualification/validation are highlighted based on authors' direct experiences and literature summary. Analysis using intact tissue samples such as MALDI imaging is also briefly discussed. © 2012 Future Science Ltd. Source

Discover hidden collaborations