Time filter

Source Type

Rochester, NY, United States

Pang J.,Tufts University | Driban J.B.,Tufts Medical Center | McAlindon T.E.,Tufts Medical Center | Tamez-Pena J.G.,TEC de Monterrey | And 3 more authors.
IEEE Journal of Biomedical and Health Informatics | Year: 2015

Active contour techniques have been widely employed for medical image segmentation. Significant effort has been focused on the use of training data to build prior statistical models applicable specifically to problems where the objects of interest are embedded in cluttered background. Usually, the training data consist of whole shapes of certain organs or structures obtained manually by clinical experts. The resulting prior models enforce segmentation accuracy uniformly over the entire structure or structures to be identified. In this paper, we consider a new coupled prior shape model which is demonstrated to provide high accuracy, specifically in the region of the interest where precision is most needed for the application of the segmentation of the femur and tibia in magnetic resonance (MR) images. Experimental results for the segmentation of MR images of human knees demonstrate that the combination of the new coupled prior shape and a directional edge force provides the improved segmentation performance. Moreover, the new approach allows for equivalent accurate identification of bone marrow lesions, a promising biomarker related to osteoarthritis, to the current state of the art but requires significantly less manual interaction. © 2013 IEEE. Source

Tamez-Pena J.G.,TEC de Monterrey | Tamez-Pena J.G.,Qmetrics Technologies LLC | Farber J.,Qmetrics Technologies LLC | Gonzalez P.C.,Qmetrics Technologies LLC | And 3 more authors.
IEEE Transactions on Biomedical Engineering | Year: 2012

This paper presents a fully automated method for segmenting articular knee cartilage and bone from in vivo 3-D dual echo steady state images. The magnetic resonance imaging (MRI) datasets were obtained from the Osteoarthritis Initiative (OAI) pilot study and include longitudinal images from controls and subjects with knee osteoarthritis (OA) scanned twice at each visit (baseline, 24 month). Initially, human experts segmented six MRI series. Five of the six resultant sets served as reference atlases for a multiatlas segmentation algorithm. The methodology created precise knee segmentations that were used to extract articular cartilage volume, surface area, and thickness as well as subchondral bone plate curvature. Comparison to manual segmentation showed Dice similarity coefficient (DSC) of 0.88 and 0.84 for the femoral and tibial cartilage. In OA subjects, thickness measurements showed test-retest precision ranging from 0.014 mm (0.6%) at the femur to 0.038 mm (1.6%) at the femoral trochlea. In the same population, the curvature test-retest precision ranged from 0.0005 mm -1 (3.6%) at the femur to 0.0026 mm -1 (11.7%) at the medial tibia. Thickness longitudinal changes showed OA Pearson correlation coefficient of 0.94 for the femur. In conclusion, the fully automated segmentation methodology produces reproducible cartilage volume, thickness, and shape measurements valuable for the study of OA progression. © 2006 IEEE. Source

Discover hidden collaborations