Qinghai Academy of Agriculture and Forestry Science

Xining, China

Qinghai Academy of Agriculture and Forestry Science

Xining, China
SEARCH FILTERS
Time filter
Source Type

Zhao H.-Y.,Qinghai Academy of Agriculture and Forestry science | Xiao L.,Qinghai Academy of Agriculture and Forestry science | Zhao Z.,Qinghai Academy of Agriculture and Forestry science | Du D.-Z.,Qinghai Academy of Agriculture and Forestry science
Acta Agronomica Sinica | Year: 2014

A BC4 population and a F2 population, derived from the cross between Dahuang and 09A-126 (brown seed, B. rapa), were constructed. AFLP (amplified fragment length polymorphism) methodology and bulked segregant analysis (BSA) were used to get five AFLP markers closely linked to yellow-seeded gene Brsc1, termed Y11-Y15 respectively. Five AFLP specific fragments were homologue with some sequences on chromosome A09 of Brassica rapa, which we converted into five SCAR markers, termed SC11-SC15. Seven SSR markers, BrID10607, KS10760, B089L03-3, A1-A4, tightly linked to Brsc1 were developed in the region of chromosome where Brsc1 was located. With five SCAR markers and seven SSR markers used for genotyping in F2 population, SC14 and A1 were confirmed as co-dominant markers. Using BC4 population, Brsc1 was located in the region of 1.7 Mb between Y06 and A04 on chromosome A9 with genetic distances of 0.115 cM and 0.980 cM. Y05 and Y12 co-segregated with Brsc1. The results were useful for developing yellow-seeded rapeseed lines by marker-assisted selection (MAS), and also laying the foundation for fine mapping and map-based cloning of Brsc1.


Yao X.-H.,Qinghai Academy of Agriculture and Forestry science | Wu K.-L.,Qinghai Academy of Agriculture and Forestry science
Acta Agronomica Sinica | Year: 2016

Higher plant lipid transfer protein (LTP) is a class of small molecular weight alkaline single protein that can transfer phospholipids between biomembrane and form the biomembrane in cells. The objective of this study was to understand the function of LTP gene in hulless barley (Hordeum vulgare L. var. nudum Hook. f.). The cDNA sequence of the LTP gene, blt4.9 (Gen- Bank accession number KU170187), was cloned from hulless barley variety Kunlun 12. The full length of blt4.9 cDNA is 720 bp including 348 bp of open reading frame and encodes 115 amino acids. The encoding product is a stable protein with a molecular weight of 11.2 kD, theoretical pI of 9.04, and instability coefficient of 28.41. This protein is rich in Gly, Ala, Leu, and Val amino acids excluding Trp, Glu, and Phe and similar to proteins encoded by other LTP genes. Sequence alignment indicated high similarity (98.3%) of protein encoded by blt4.9 from hulless barley and barley (Hordeum vulgare L.). The Real-time PCR assay showed that blt4.9 was up-regulated by 20-30% PEG-6000, 4°C and 50 μmol L-1 ABA and the expression level was higher in the most tolerant variety Handizi than in the most susceptible variety Dama, indicating a possible relationship between stress tolerance and blt4.9 in hulless barley. These results provide basic information in the utilization of LTP genes to improve hulless barley tolerance to abiotic stresses.


Zhang S.-D.,East China University of Science and Technology | Shan L.,Shanghai University | Li W.,Qinghai Academy of Agriculture and Forestry Science | Li H.-L.,East China University of Science and Technology | And 2 more authors.
Chinese Journal of Natural Medicines | Year: 2015

The biflavonoid isochamaejasmin is mainly distributed in the root of Stellera chamaejasme L. (Thymelaeaceae) that is used in traditional Chinese medicine (TCM) to treat tumors, tuberculosis, and psoriasis. Herein, isochamaejasmin was found to show similar bioactivity against Bcl-2 family proteins to the reference Bcl-2 ligand (-)-gossypol through 3D similarity search. It selectively bound to Bcl-xl and Mcl-1 with Ki values being 1.93 ± 0.13 μmol·L-1 and 9.98 ± 0.21 μmol·L-1, respectively. In addition, isochamaejasmin showed slight growth inhibitory activity against HL-60 with IC50 value being 50.40 ± 1.21 μmol·L-1 and moderate growth inhibitory activity against K562 cells with IC50 value being 24.51 ± 1.62 μmol·L-1. Furthermore, isochamaejasmin induced apoptosis of K562 cells by increasing the intracellular expression levels of proteins of the cleavage of caspase-9, caspase-3, and PARP which involved in the Bcl-2-induced apoptosis pathway. These results indicated that isochamaejasmin induces apoptosis in leukemia cells by inhibiting the activity of Bcl-2 family proteins, providing evidence for further studying the underlying anti-cancer mechanism of S. chamaejasme L. © 2015 China Pharmaceutical University.


PubMed | East China University of Science and Technology, Shanghai University and Qinghai Academy of Agriculture and Forestry Science
Type: Journal Article | Journal: Chinese journal of natural medicines | Year: 2015

The biflavonoid isochamaejasmin is mainly distributed in the root of Stellera chamaejasme L. (Thymelaeaceae) that is used in traditional Chinese medicine (TCM) to treat tumors, tuberculosis, and psoriasis. Herein, isochamaejasmin was found to show similar bioactivity against Bcl-2 family proteins to the reference Bcl-2 ligand (-)-gossypol through 3D similarity search. It selectively bound to Bcl-xl and Mcl-1 with Ki values being 1.93 0.13 molL(-1) and 9.98 0.21 molL(-1), respectively. In addition, isochamaejasmin showed slight growth inhibitory activity against HL-60 with IC50 value being 50.40 1.21 molL(-1) and moderate growth inhibitory activity against K562 cells with IC50 value being 24.51 1.62 molL(-1). Furthermore, isochamaejasmin induced apoptosis of K562 cells by increasing the intracellular expression levels of proteins of the cleavage of caspase-9, caspase-3, and PARP which involved in the Bcl-2-induced apoptosis pathway. These results indicated that isochamaejasmin induces apoptosis in leukemia cells by inhibiting the activity of Bcl-2 family proteins, providing evidence for further studying the underlying anti-cancer mechanism of S. chamaejasme L.


Hou L.,Northwest University, China | Hou L.,Qinghai Academy of Agriculture and Forestry Science | Ma D.-F.,Northwest University, China | Hu M.-L.,Northwest University, China | And 4 more authors.
Journal of Integrative Agriculture | Year: 2013

Triticum aestivum-Hayaldia villosa translocation line V3 has shown effective all-stage resistance to the seven dominant pathotypes of Puccinia striiforms f. sp. tritici prevalent in China. To elucidate the genetic basis of the resistance, the segregating populations were developed from the cross between V3 and susceptible genotype Mingxian 169, seedlings of the parents and F2 progeny were tested with six prevalent pathotypes, including CYR29, CYR31, CYR32-6, CYR33, Sun11-4, and Sun11-11, F1 plants and F3 lines were also inoculated with Sun11-11 to confirm the result further. The genetic studied results showed that the resistance of V3 against CYR29 was conferred by two dominant genes, independently, one dominant gene and one recessive gene conferring independently or a single dominant gene to confer resistance to CYR31, two complementary dominant genes conferring resistance to both CYR32-6 and Sun11-4, two independently dominant genes or three dominant genes (two of the genes show cumulative effect) conferring resistance to CYR33, a single dominant gene for resistance to Sun11-11. Resistance gene analog polymorphism (RGAP) and simple-sequence repeat (SSR) techniques were used to identify molecular markers linked to the single dominant gene (temporarily designated as YrV3) for resistance to Sun11-11. A linkage map of 2 RGAP and 7 SSR markers was constructed for the dominant gene using data from 221 F2 plants and their derived F2:3 lines tested with Sun11-11 in the greenhouse. Amplification of the complete set of nulli-tetrasomic lines of Chinese Spring with a RGAP marker RG1 mapped the gene on the chromosome 1B, and then the linked 7 SSR markers located this gene on the long arm of chromosome 1B. The linkage map spanned a genetic distance of 25.0 cM, the SSR markers Xgwm124 and Xcfa2147 closely linked to YrV3 with genetic distances of 3.0 and 3.8 cM, respectively. Based on the linkage map, it concluded that the resistance gene YrV3 was located on chromosome arm 1BL. Given chromosomal location, the reaction patterns and pedigree analysis, YrV3 should be a novel gene for resistance to stripe rust in wheat. These closely linked markers should be useful in stacking genes from different sources for wheat breeding and diversification of resistance genes against stripe rust. © 2013 Chinese Academy of Agricultural Sciences.


Zou L.,Qinghai Academy of Agriculture and Forestry science | Ross B.M.,Lakehead University | Hutchison L.J.,Lakehead University | Christopher L.P.,Lakehead University | And 2 more authors.
Enzyme and Microbial Technology | Year: 2015

Demethylation of industrial lignin has been for long coveted as a pathway to the production of an abundant natural substitute for fossil-oil derived phenol. In an attempt to possibly identify a novel Kraft lignin-demethylating enzyme, we surveyed a collection of fungi by using selected ion flow tube-mass spectrometry (SIFT-MS). This method readily identifies methanol resulting from lignin demethylation activity. Absidia cylindrospora, and unidentified Cylindrocladium sp. and Aspergillus sp. were shown to metabolize lignin via different pathways, based on the HPLC analysis of lignin fragments. Of these three, Cylindrocladium and Aspergillus were shown to retain most of the lignin intact after 3 weeks in culture, while removing about 40% of the available methoxy groups. Our results demonstrate that after optimization of culture and lignin recovery methods, biological modification of Kraft lignin may be a feasible pathway to obtaining demethylated lignin for further industrial use. © 2015.


PubMed | Qinghai Academy of Agriculture and Forestry science and Lakehead University
Type: | Journal: Enzyme and microbial technology | Year: 2015

Demethylation of industrial lignin has been for long coveted as a pathway to the production of an abundant natural substitute for fossil-oil derived phenol. In an attempt to possibly identify a novel Kraft lignin-demethylating enzyme, we surveyed a collection of fungi by using selected ion flow tube-mass spectrometry (SIFT-MS). This method readily identifies methanol resulting from lignin demethylation activity. Absidia cylindrospora, and unidentified Cylindrocladium sp. and Aspergillus sp. were shown to metabolize lignin via different pathways, based on the HPLC analysis of lignin fragments. Of these three, Cylindrocladium and Aspergillus were shown to retain most of the lignin intact after 3 weeks in culture, while removing about 40% of the available methoxy groups. Our results demonstrate that after optimization of culture and lignin recovery methods, biological modification of Kraft lignin may be a feasible pathway to obtaining demethylated lignin for further industrial use.


PubMed | Qinghai Academy of Agriculture and Forestry science and Northeast Agricultural University
Type: | Journal: Scientific reports | Year: 2017

Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1 genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents.


Ye J.,Qinghai Academy of Agriculture and Forestry Science | Wang S.,Northwest University, China | Zhang F.,Qinghai Academy of Agriculture and Forestry Science | Xie D.,Qinghai Academy of Agriculture and Forestry Science | Yao Y.,Qinghai Academy of Agriculture and Forestry Science
Plant OMICS | Year: 2013

Drought is an abiotic stress that strongly influences plant growth, development and productivity. To understand the drought tolerance mechanism at the protein level in wheat, a differential proteomics study was carried out on young spring wheat leaves of different genotypes in PEG-stressed and rewatered, using two-dimensional polyacrylamide gel electrophoresis (2-DE). A 2-DE pattern with high resolution and good reproducibility was obtained after staining with Coomassie brilliant blue G-250. Using PDQuest software, 600 protein spots were clearly identified from the treatment and control groups with isoelectric points ranging from 4.0 to 7.0. Thirty-eight differentially expressed protein spots were MALDI-TOF/TOF-MS fingerprinted using 2-DE gel and 35 spots were identified by search through the NCBInr database using Mascot software. Of 35 proteins, twenty-one proteins changed in abundance after PEG stress, with 15 proteins up-regulated, whereas 6 proteins down-regulated. Twenty four hour after rewatering, there were 5 proteins up-regulated and 9 proteins down-regulated compared to the well-watered control. Twenty-two differentially expressed proteins were detected in Qingchun 38 and 13 proteins in Abbondanza. They were involved in photosynthesis, protein biosynthesis, energy pathway, carbon metabolism, cell defense, oxidation reduction, transportation and signal transduction. Our proteomics results suggested that drought stress significantly affects wheat photosynthesis.


Xu Z.,Northwest University, China | Xu Z.,Qinghai Academy of Agriculture and Forestry science | Wang C.,Northwest University, China | Xue F.,Shihezi University | And 2 more authors.
Plant Physiology and Biochemistry | Year: 2015

Soil salinity is considered as one of the most severe abiotic stress factors, which limit plant growth and cause significant losses in crop yield. NAC transcription factors have been proven to play vital roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by salt stress whereas only a few NAC genes have been characterized functionally. To promote the application of NAC genes in wheat improvement by genetic engineering, a NAC gene designated TaNAC29 was characterized in common wheat. Expression analysis showed that TaNAC29 gene was involved in response to salt, drought and ABA treatments. TaNAC29 protein displays transactivation activity. To determine its role, transgenic Arabidopsis overexpressing TaNAC29 controlled by the CaMV-35S promoter was generated and subjected to salt stress for morphological and physiological assays. Morphological analysis showed that transgenic plants had enhanced tolerance to salt stress, as indicated by improved physiological traits, including more green leaves, reduced H2O2 accumulation, strengthened cell membrane stability and higher SOD, POD, CAT and APX activities. Moreover, the transcript levels of stress-related genes were significantly higher in TaNAC29 overexpression line than those in WT under salt treatment. Taken together, our results demonstrate that TaNAC29 confers salt stress tolerance through reducing H2O2 accumulation and membrane damage by enhancing the antioxidant system, and participating in regulating the abiotic stress-responsive signaling pathway. © 2015 Elsevier Masson SAS.

Loading Qinghai Academy of Agriculture and Forestry Science collaborators
Loading Qinghai Academy of Agriculture and Forestry Science collaborators