Farnborough, United Kingdom
Farnborough, United Kingdom

Qinetiq is a British multinational defence technology company headquartered in Farnborough, Hampshire, United Kingdom. It is the world's 52nd-largest defence contractor measured by 2011 defence revenues, and the sixth-largest based in the UK.It is the part of the former UK government agency, Defence Evaluation and Research Agency , privatised in June 2001, with the remainder of DERA renamed Dstl. It has major sites at Farnborough, Hampshire, MoD Boscombe Down, Wiltshire, and Malvern, Worcestershire, former DERA sites. It has made numerous acquisitions, primarily of United States-based companies.It is listed on the London Stock Exchange and is a constituent of the FTSE 250 Index. Wikipedia.


Time filter

Source Type

Patent
QinetiQ | Date: 2015-05-22

An electric motor comprising: a stator comprising a plurality of circumferentially distributed drive elements for causing an electromagnetic driving force to be applied to a rotor of the electric motor in use, wherein each drive element comprises a wire extending around a metal core to define a plurality of coils for magnetizing the metal core when current flows in the coils, and wherein at least one space exists between the metal core of each respective drive element and the coils around it; and cooling means for transferring heat away from the drive elements; wherein each said drive element further comprises a heat conductor comprising a plurality of mutually electrically isolated metallic elements located in the or each respective space between the metal core thereof and the coils around it, for transferring heat from the coils to the cooling means.


Patent
QinetiQ | Date: 2017-03-22

An oil and gas well shaped charge perforator capable of providing an exothermic reaction after detonation is provided, comprising a housing (2), a high explosive (3), and a reactive liner (6) where the high explosive (3) is positioned between the reactive liner (6) and the housing (2). The reactive liner (6) is produced from a composition which is capable of sustaining an exothermic reaction during the formation of the cutting jet. The composition may be selected from any known formulation which is suitable for use in an oil and gas well perforator, typically the composition will comprise at least two metals such as to form an inter-metallic as classified by Hume-Rothery electron compounds and at least one further metal, which is not capable of an exothermic reaction with the reactive composition which is present in an amount greater than 10% w/w of the liner (6).


Patent
QinetiQ | Date: 2017-03-22

An oil and gas well shaped charge perforator capable of providing an exothermic reaction after detonation is provided, comprising a housing (2), a high explosive (3), and a reactive liner (6) where the high explosive (3) is positioned between the reactive liner (6) and the housing (2). The reactive liner (6) is produced from a composition which is capable of sustaining an exothermic reaction during the formation of the cutting jet. The composition may be selected from any known formulation which is suitable for use in an oil and gas well perforator, typically the composition will comprise at least two metals such as to form an inter-metallic as classified by Hume-Rothery electron compounds and at least one further metal, which is not capable of an exothermic reaction with the reactive composition which is present in an amount greater than 10% w/w of the liner (6).


Patent
QinetiQ | Date: 2017-03-01

A fibre reinforced polymer (FRP) composite structure incorporates a woven preform containing tows of carbon or other advanced fibres (1,3) and wires (2,4) of shape memory alloy (SMA). The SMA wires are capable of absorbing much larger amounts of strain energy than the conventional components of FRP composites and hence enhance the impact resistance of the structure. The woven form incorporates the SMA into the structure in an optimum manner in terms of handling and performance.


Patent
QinetiQ | Date: 2017-03-01

A sheet of thermally reflective material (1) has a surface texture comprising a plurality of reflecting elements (2), wherein each element has a first face (4) which is substantially reflective at thermal infrared wavelengths and wherein the respective first facets (4) form an angle with the plane of the sheet (A-B)( 0 < < 90). Preferably, the first facets (4) are aligned such that, in use, thermal radiation is reflected from a common direction. By orienting the sheet of thermally reflective material to reflect cold regions of the sky, a marking material exhibiting a cold spot in a thermal imager can be provided.


Patent
QinetiQ | Date: 2015-05-22

Apparatus for managing fluid flow in a vehicle, comprising: an epicylic gear set having first and second inputs configured to receive rotational drive input from a torque output feature of a powertrain and a rotary actuator respectively; a pump driver for driving a fluid pump, the pump driver configured to receive rotational drive input from an output of the epicylic gear set; and a controller configured to determine information corresponding to the rotational speed of the torque output feature using information generated by a rotational speed sensor and based on this control the rotary actuator such that the pump driver is caused to rotate at substantially a pre-specified speed.


Grant
Agency: European Commission | Branch: H2020 | Program: ECSEL-RIA | Phase: ECSEL-01-2014 | Award Amount: 52.90M | Year: 2015

The 3Ccar project will provide highly integrated ECS Components for Complexity Control in thereby affordable electrified cars. The new semiconductors for Complexity management (Control, reduction) will offer the next level of energy efficiency in transportation systems. 3Ccars impact is maximizing pragmatic strategy: Use semiconductor technology innovations to manage functionality & complexity increase. This leads also to cheaper, efficient, robust, comfortable, reliable and usable automotive systems. This strengthens Europe as a whole (OEM, Tier1, Semiconductor) generating economic growth and new jobs in Europe. The impact of 3Ccar is driven vertically by innovations and horizontally enabling growth and deployment in the industry based on what we see as European Values. We recognized that European engineers develop for highest efficiency, convergence and manageable complexity. Our society appreciates long life products to avoid waste. 50 partners and 55 Mio budget give the mass for innovative products such as functional integrated powertrains, smart battery cells with unique selling features allowing Europe to advance to global leadership. An important feature of the project has been the recognition and exploitation of synergies with other EV projects, enabling fast innovation cycles between such aligned projects. With 55 Mio budget and 10 b impact the R&D expenditure ratio is 200 which is 10x higher than the semiconductor average and corresponds to very strong innovation potential which will be translated into automotive and semiconductor industry. The technologies developed in 3Ccar will be commercialized all over the world while giving advantages to Europes OEMs willing to manufacture in Europe. 3Ccar will be involved in standardization needed to ensure that large vertical supply chains can be established. The 3Ccar project shows that collaboration between industry, research institutes, governments and customers is pivotal for excellence in Europe.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: COMPET-3-2016-a | Award Amount: 10.60M | Year: 2017

The consortium proposes an innovative activity to develop, build and test to TRL5 the first European Plug and Play Gridded Ion Engine Standardised Electric Propulsion Platform (GIESEPP) to operate Airbus Safran Launchers and QinetiQ Space ion engines. These are the only European ion engines in the 200-700W (LEO) and 5kW (GEO) domains that are space-proven, and the consortiums intention will be to improve European competitiveness and to maintain and secure the European non-dependence in this field. The project will design and develop a standardised electric propulsion platform for 200-700W and 5kW applications, which has the capability to run either Airbus Safran Launchers or QinetiQ thrusters. In addition, the 5kW electric propulsion system will be designed to allow clustering for 20kW EPS for space transportation, exploration and interplanetary missions. In order to cope with challenging mission scenarios, Dual Mode functionality of the thrusters will be realised. This ensures that the beneficial high Isp characteristics of Gridded Ion Engines are maintained, whilst also offering a competitive higher thrust mode. The GIESEPP systems will not be limited to xenon as an operating medium; assessments will be performed to ensure functionality with alternative propellants. The approach to system standardisation and the resulting solutions will provide highly cost competitive and innovative EPS for current and future satellite markets, whilst meeting the cost efficiency requirements. The proposal will describe the roadmap to higher TRL by 2023-2024, providing a cost competitive EPS. Finally, the proposal will address efficient exploitation of the results, demonstrating how the activity will positively increase the impact and prospects for European Ion Engines and the European Electric Propulsion System community.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 306.10K | Year: 2016

Wireless communications have enabled a plethora of novel applications in recent years thanks to the continuous research efforts to increase the spectral efficiency (SE) and energy efficiency (EE) of wireless networks. Multi-antenna (MIMO) processing plays a central part towards harnessing those gains. MIMO has grown much beyond the original point-to-point channel and can nowadays refer to a diverse range of centralized and distributed deployments (e.g. multi-cell MIMO, cooperative/coordinated MIMO, distributed MIMO, massive MIMO, network MIMO). The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on very dense heterogeneous networks and transmitters equipped with a very large number of antennas. CSIT inaccuracy results in a multi-user interference that significantly degrades the network performance. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. The motivation behind this project is the following: wouldnt it be wiser to design wireless networks from scratch accounting for imperfect CSIT? In this project, we leverage recent progress in information theory and initial results by the PIs to address the above fundamental CSIT problem (and its resulting multi-user interference) by introducing a rate-splitting (RS) network architecture. Contrary to current approaches where transmission is operated in a broadcast manner with one private message per user, the approach considered consists in splitting one receivers message into a common and a private part and superposing this common message on top of all users private messages. The common message is decoded by all users but intended to only one of the users. Such approach has recently been found to be optimal from an information theoretic perspective in a multiuser deployment with imperfect CSIT and significant enhancements over conventional approaches in terms of spectral efficiency and power utilization have been demonstrated by the PIs. This visionary project conducted at Imperial College London and University of Edinburgh by leading experts in wireless communication theory aims at leveraging those recent findings to design and demonstrate the suitability of an RS-based MIMO wireless network architecture in a multitude of scenarios. To put together this novel wireless network solution in a credible fashion, this project focuses on designing 1) RS for a single transmission point, 2) RS for a large number of co-localized antennas (also called Massive MIMO) in microwave and millimeter-wave bands, 3) RS for a large number of distributed antennas representative of dense heterogeneous networks, 4) RS for multi-antenna relay channel and finally 5) evaluating the system level performance of RS-based networks. The project will be performed in partnership with leaders in equipment manufacturing and standardization (Toshiba and InterDigital) and in defence and emergency services (Qinetiq). The project demands a strong track record in wireless communication, MIMO signal processing, optimization, information theory and it is to be conducted in a unique research group with a right mix of theoretical and practical skills. With the above and given the novelty and originality of the topic, the research outcomes will be of considerable value to transform the future of wireless and give the industry a fresh and timely insight into the development of robust MIMO wireless networks, advancing UKs research profile of both wireless communication in the world. Its success would radically change the design of the physical layer of wireless communication systems and have a tremendous impact on standardization.


Grant
Agency: GTR | Branch: Innovate UK | Program: | Phase: Collaborative Research & Development | Award Amount: 1.19M | Year: 2016

During wind tunnel testing of aircraft, the aerodynamic effects of jet engines are represented using one of two techniques. The vast majority of models use ‘Through Flow Nacelles’ (TFN), effectively open tubes, which do not represent any powered engine airflow. A small amount of more representative testing is achieved using Turbine Powered Simulators (TPS) to represent engine airflow, but this is expensive, cumbersome, and requires significant energy and fixed infrastructure to operate. A new generation of permanent magnet electric motors has recently been developed for the Formula 1 industry (primarily for kinetic energy recovery and power systems), which appear to have the power density necessary for the effective simulation of scaled jet engines. This project aims to further develop these motors, the associated test control infrastructure, and techniques, for successful aerospace wind tunnel testing. The aim is to deliver the representative effect of TPS techniques, whilst eliminating the associated fixed infrastructure, by using electric motors instead of a turbine. The outcome sought is the more frequent generation of high fidelity data at lower overall lifecycle cost.

Loading QinetiQ collaborators
Loading QinetiQ collaborators