Entity

Time filter

Source Type

Dongguan, China

Hosgood III H.D.,U.S. National Cancer Institute | Zhang L.,University of California at Berkeley | Tang X.,Guangdong Poison Control Center | Tang X.,Guangdong Medical Laboratory Animal Center | And 18 more authors.
Frontiers in Oncology | Year: 2012

Trichloroethylene (TCE) is a volatile chlorinated organic compound that is commonly used as a solvent for lipophilic compounds. Although recognized as an animal carcinogen, TCE's carcinogenic potential in humans is still uncertain. We have carried out a cross-sectional study of 80 workers exposed to TCE and 96 unexposed controls matched on age and sex in Guangdong, China to study TCE's early biologic effects. We previously reported that the total lymphocyte count and each of the major lymphocyte subsets (i.e., CD4+ T cells, CD8+ T cells, natural killer cells, and B cells) were decreased in TCE-exposed workers compared to controls, suggesting a selective effect on lymphoid progenitors, and/or lymphocyte survival. To explore which T lymphocyte subsets are affected in the same study population, we investigated the effect of TCE exposure on the numbers of CD4+ naïve and memory T cells, CD8+ naïve and memory T cells, and regulatory T cells by FACS analysis. Linear regression of each subset was used to test for differences between exposed workers and controls adjusting for potential confounders. We observed that CD4+ and CD8+ naïve T cell counts were about 8% (p = 0.056) and 17% (p = 0.0002) lower, respectively, among exposed workers. CD4+ effector memory T cell counts were decreased by about 20% among TCE-exposed workers compared to controls (p = 0.001). The selective targeting of TCE on CD8+ naive and possibly CD4+ naive T cells, and CD4+ effector memory T cells, provide further insights into the immunosuppression-related response of human immune cells upon TCE exposure. © 2012 Hosgood III, Zhang, Tang, Vermeulen, Qiu, Shen, Smith, Ge, Ji, Xiong, He, Reiss, Liu, Xie, Guo, Galvan, Li, Hao, Rothman, Huang and Lan. Source


Zhang L.,University of California at Berkeley | Bassig B.A.,U.S. National Cancer Institute | Mora J.L.,University of California at Berkeley | Vermeulen R.,University Utrecht | And 19 more authors.
Carcinogenesis | Year: 2013

Trichloroethylene (TCE) has been associated with a variety of immunotoxic effects and may be associated with an increased risk of non-Hodgkin lymphoma (NHL). Altered serum immunoglobulin (Ig) levels have been reported in NHL patients and in animals exposed to TCE. Recently, we reported that occupational exposure to TCE is associated with immunosuppressive effects and immune dysfunction, including suppression of B-cell counts and activation, even at relatively low levels. We hypothesized that TCE exposure would also affect Ig levels in humans. We measured serum levels of IgG, IgM and IgE, by enzyme-linked immunosorbent assay, in TCE-exposed workers (n = 80) and unexposed controls (n = 45), matched by age and gender, in a cross-sectional, molecular epidemiology study of occupational exposure to TCE in Guangdong, China. Exposed workers had about a 17.5% decline in serum levels of IgG compared with unexposed controls (P = 0.0002). Similarly, serum levels of IgM were reduced by about 38% in workers exposed to TCE compared with unexposed controls (P < 0.0001). Serum levels of both IgG and IgM were significantly decreased in workers exposed to TCE levels below 12 p.p.m., the median exposure level. Adjustment for B-cell counts had minimal impact on our findings. IgE levels were not significantly different between exposed and control subjects. These results provide further evidence that TCE is immunotoxic at relatively low exposure levels and provide additional biologic plausibility for the reported association of TCE with NHL. © The Author 2012. Published by Oxford University Press. All rights reserved. Source


Lan Q.,U.S. National Cancer Institute | Zhang L.,University of California at Berkeley | Tang X.,Guangdong Poison Control Center | Shen M.,U.S. National Cancer Institute | And 21 more authors.
Carcinogenesis | Year: 2010

Occupational cohort and case-control studies suggest that trichloroethylene (TCE) exposure may be associated with non-Hodgkin lymphoma(NHL) but findings are not consistent. There is a need for mechanistic studies to evaluate the biologic plausibility of this association. We carried out a cross-sectional molecular epidemiology study of 80 healthy workers that used TCE and 96 comparable unexposed controls in Guangdong, China. Personal exposure measurements were taken over a three-week period before blood collection. Ninety-six percent of workers were exposed to TCE below the current US Occupational Safety and Health Administration Permissible Exposure Limit (100 p.p.m. 8 h time-weighted average), with a mean (SD) of 22.2 (36.0) p.p.m. The total lymphocyte count and each of the major lymphocyte subsets including CD4+ T cells, CD8+ T cells, natural killer (NK) cells and B cells were significantly decreased among the TCE-exposed workers compared with controls (P < 0.05), with evidence of a dosedependent decline. Further, there was a striking 61% decline in sCD27 plasma level and a 34% decline in sCD30 plasma level among TCE-exposed workers compared with controls. This is the first report that TCE exposure under the current Occupational Safety and Health Administration workplace standard is associated with a decline in all major lymphocyte subsets and sCD27 and sCD30, which play an important role in regulating cellular activity in subsets of T, B and NK cells and are associated with lymphocyte activation. Given that altered immunity is an established risk factor for NHL, these results add to the biologic plausibility that TCE is a possible lymphomagen. Published by Oxford University Press 2010. Source


Hosgood H.D.,U.S. National Cancer Institute | Zhang L.,University of California at Berkeley | Tang X.,Guangdong Poison Control Center | Vermeulen R.,University Utrecht | And 23 more authors.
American Journal of Industrial Medicine | Year: 2013

Background: Formaldehyde is used in many occupational settings, most notably in manufacturing, health care, and embalming. Formaldehyde has been classified as a human carcinogen, but its mechanism of action remains uncertain. Methods: We carried out a cross-sectional study of 43 formaldehyde-exposed workers and 51 unexposed age and sex-matched controls in Guangdong, China to study formaldehyde's early biologic effects. To follow up our previous report that the total lymphocyte count was decreased in formaldehyde-exposed workers compared with controls, we evaluated each major lymphocyte subset (i.e., CD4+ T cells, CD8+ T cells, natural killer [NK] cells, and B cells) and T cell lymphocyte subset (CD4+ naïve and memory T cells, CD8+ naïve and memory T cells, and regulatory T cells). Linear regression of each subset was used to test for differences between exposed workers and controls, adjusting for potential confounders. Results: Total NK cell and T cell counts were about 24% (P=0.037) and 16% (P=0.0042) lower, respectively, among exposed workers. Among certain T cell subsets, decreased counts among exposed workers were observed for CD8+ T cells (P=0.026), CD8+ effector memory T cells (P=0.018), and regulatory T cells (CD4+FoxP3+: P=0.04; CD25+FoxP3+: P=0.008). Conclusions: Formaldehyde-exposed workers experienced decreased counts of NK cells, regulatory T cells, and CD8+ effector memory T cells; however, due to the small sample size; these findings need to be confirmed in larger studies. © 2012 Wiley Periodicals, Inc. Source


Zhang L.,University of California at Berkeley | Tang X.,Guangdong Poisoning Control Center | Rothman N.,U.S. National Cancer Institute | Vermeulen R.,University Utrecht | And 33 more authors.
Cancer Epidemiology Biomarkers and Prevention | Year: 2010

There are concerns about the health effects of formaldehyde exposure, including carcinogenicity, in light of elevated indoor air levels in new homes and occupational exposures experienced by workers in health care, embalming, manufacturing, and other industries. Epidemiologic studies suggest that formaldehyde exposure is associated with an increased risk of leukemia. However, the biological plausibility of these findings has been questioned because limited information is available on the ability of formaldehyde to disrupt hematopoietic function. Our objective was to determine if formaldehyde exposure disrupts hematopoietic function and produces leukemia-related chromosome changes in exposed humans. We examined the ability of formaldehyde to disrupt hematopoiesis in a study of 94 workers in China (43 exposed to formaldehyde and 51 frequency-matched controls) by measuring complete blood counts and peripheral stem/progenitor cell colony formation. Further, myeloid progenitor cells, the target for leukemogenesis, were cultured from the workers to quantify the level of leukemia-specific chromosome changes, including monosomy 7 and trisomy 8, in metaphase spreads of these cells. Among exposed workers, peripheral blood cell counts were significantly lowered in a manner consistent with toxic effects on the bone marrow and leukemia-specific chromosome changes were significantly elevated in myeloid blood progenitor cells. These findings suggest that formaldehyde exposure can have an adverse effect on the hematopoietic system and that leukemia induction by formaldehyde is biologically plausible, which heightens concerns about its leukemogenic potential from occupational and environmental exposures. ©2010 AACR. Source

Discover hidden collaborations