Time filter

Source Type


Pva Tepla Analytical Systems Gmbh | Date: 2010-07-28

Acoustic computer tomography apparatus and instruments and installations constructed therefrom and parts therefor, for the inspection, quality control and crack inspection, material testing and material analysis of wafers, electric circuits and components; ultrasound apparatus, other than for medical purposes, and parts therefor; acoustic microscopes; optical goods, imaging apparatus and systems and installations consisting of electronic measuring platforms in the field of semiconductor materials, namely, wafers and reticles. Production, maintenance and repair of acoustic analysis apparatus, acoustic microscopes and ultrasound apparatus. Conducting crack inspections with ultrasound apparatus and acoustic microscopes; material testing, material analysis and quality control, namely with the aid of acoustic and computer tomography processes, in particular non-destructive processes; testing of structural and connection systems; development, construction drafting, conception, designing and planning of equipment, apparatus and instruments in the field of computer tomography, in particular acoustic computer tomography; calibration and function testing of ultrasound apparatus and acoustic microscopes; process optimization consultancy and implementation; technical services in relation to the development of methods and algorithms for measurement data evaluation and image analysis; engineering, namely acousto-mechanical engineering.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2009.3.1 | Award Amount: 14.06M | Year: 2010

SEAL is a project for an integrated project consisting of 17 equipment assessment sub-projects in the area of semiconductor manufacturing equipment. The assessment themes are equally spread amongst processing and metrology equipment, heading beyond the current state-of-the-art both for More Moore and More than Moore applications. The strategic objective of SEAL is to effectively combine efforts, resources and expertise in the joint assessment of novel equipment supported by cross-cut R&D dedicated to the identified needs of the assessment sub-projects.For Lithography, the key areas of illumination systems for mask aligners, EUV mask manufacturing and intelligent overlay management are addressed as well as massively parallel e-beam lithography. In addition, three important processes are addressed: low temperature oxidation, cleaning of sensitive interconnect stacks/structures and ion implantation for ultra shallow junctions and defect engineering. For metrology and analysis, the main focus is on enabling innovative systems to efficiently contribute to at-line and in-line monitoring and control within semiconductor facilities. Without such equipment, it will not be possible to validate progressively advanced processes during development and manufacturing.Cross-cut R&D activities relating to all equipment assessment sub-projects are covered including APC, model based control, equipment simulation, enhanced wafer and equipment logistics, advanced communication and man machine-interfaces, and virtual equipment engineering. A common approach for the assessment activities will be utilised with specifications that will be refined for each equipment type for the progressively emerging technology nodes.Overall, SEAL will strengthen the European equipment manufacturing industry in an ideal and sustainable way by combining advanced R&D topics in equipment sub-projects involving a wide community of users, research institutes and equipment suppliers with many SMEs.

Agency: Cordis | Branch: H2020 | Program: IA | Phase: ICT-25-2015 | Award Amount: 3.35M | Year: 2016

Within the food chain of equipment delivery for the semiconductor industry, Europe has kept a very strong position in the metrology area with many companies establishing themselves as main leaders in the field. Hence in line with the objectives of the ICT25 call for innovation action to overcome the (initial) barriers for the successful commercialization of novel European products, this project aims at exploring for a number of metrology solutions their technological readiness, reliability and relevance of the developed protocols, and the COO. The portfolio within the project covers new metrology concepts addressing specifically the processing challenges linked to 3D-Devices and range from probing basic layer properties (composition, electrical properties) in FEOL to control of metallization in BEOL up to issues linked to die stacking. Due to the specific processing steps which need to be addressed, three separate metrology tools will be assessed in this project i.e a Tofsims system (IonTOF) with build-in Scanning Probe stage and FIB column for true 3D-composition profiling, a completely automated micro-Hall and sheet resistance measurement tool (Capres) with additional capabilities for measurements on dedicated test structures (prior to full BEOL) and an GHz acoustic Microscope (Tepla) for probing voids in TSVs and stacked dies. As some of them (IonTOf, Capres) are addressing partly complementary information (composition versus electrical properties), their co-existence in this project creates additional value as beyond the tool assessment also a methodology based on combining these concepts can be explored and certified. Moreover a significant efficiency gain is created as they can employ similar test structures and devices. For each of these tools, the basic metrology concepts are existing and validated in the lab on selected applications but their general applicability field within the semiconductor industry still needs to be established

Discover hidden collaborations