New Boston, MI, United States
New Boston, MI, United States
SEARCH FILTERS
Time filter
Source Type

A stepped capillary tube consisting of two serially connected capillary tubes with different diameters is invented to replace the conventional expansion device. The mass flow rate of refrigerant R410A in stepped capillary tubes with different size were tested. The model of stepped capillary tube is proposed, and its numerical algorithm for tube length and mass flow rate is developed. The experimental results show that the performance comparing between stepped capillary tube system and capillary tube assembly system, the cooling capacity is reduced by 0.3%, the energy efficiency ratio(EER) is equal to each other, the heating capacity is increased by 0.3%, the coefficient of performance(COP) is decreased by 0.3%. That is to say, the performance index of the two kinds of throttle mechanism is almost identical. It indicates that the stepped capillary tube can replace the capillary tube assembly in the R410A heat pump type air conditioner absolutely. The model is validated with experimental data, and the results show that the model can be used for sizing and rating stepped capillary tube. © (2014) Trans Tech Publications, Switzerland.


In this article, Cu-H2O, Co-H2O, MWCNT-H2O nanofluids were prepared through two-step method. The transmittance of nanofluids over solar spectrum (250 to 2500nm) was measured by the UV-Vis-NIR spectrophotometer based on integrating sphere principle. The factors of various particle size, mass fraction and optical path influencing transmittance of nanofluids were investigated. The experimental results show that the transmittance of the three nanofluids is much less than that of deionized water. The transmittance decreased with the nanoparticle size and mass fraction increasing, but increased with the optical path length reducing. With the same mass fraction, the transmittance of MWCNT-H2O nanofluids is the minimum. The transmittance of Co-H2O nanofluids is higher than that of Cu-H2O nanofluids within 2507~75nm wavelength range, while inverse in 775-1370nm wavelength range. It indicates that different particle has diverse light absorption properties in different wavelength range. © (2014) Trans Tech Publications, Switzerland.


Inaguma Y.,Pump Engineering
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science | Year: 2012

This article presents a practical approach to the investigation of the influence of oil temperature on the friction torque in various types of hydraulic pumps using a mathematical model. Currently, an external gear, an internal gear or a vane pump is commonly used for an automatic transmission. These pumps have their own friction torque characteristics, which depend not only on pump-operating conditions such as operating pressures, pump speeds and oil temperature but also on structures and dimensions of the pumps. For various pumps, however, the friction torque characteristics can be represented by an identical mathematical model. In the pump-operating conditions, the oil temperature significantly and complicatedly affects them. The pump should be operated under conditions to obtain a higher mechanical efficiency, and the mathematical model is helpful to analyse how the oil temperature influences the friction torque. It is found that with an increase in oil temperature, the friction torque at a high pump speed decreases in a low oil temperature region, but it would not decrease in a high oil temperature region for all the tested pumps. This fact suggests that the pump overall efficiency would not improve at a high oil temperature, even if the volumetric efficiency does not go down. © IMechE 2011.


Xu Y.S.,Pump Engineering
Advanced Materials Research | Year: 2014

In order to calculate the structure size of stepped capillary tube, the experiments of flow characteristic of it were performed. The experience benchmark model of flow characteristics of R22 was set up through experimental method in specific reference conditions based on the impedance calculation method. The variable working condition model suitable for a range of conditions was obtained through fixing the condition based on the reference model. The mass flow rate of refrigerant R22 in two stepped capillary tubes with different size was tested. The experimental results show that the stepped capillary tube model has a high precision and working condition of certain flexibility. The deviation of cooling and heating flow between the calculated values and measured values are less than±10%. The model can meet the need of matching for stepped capillary tube on the heat pump type air conditioner with R22. © (2014) Trans Tech Publications, Switzerland.


Inaguma Y.,Pump Engineering
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science | Year: 2011

This paper describes the influence of pump operating conditions, such as operating pressures, pump speeds, and oil temperatures, on the friction torque characteristics of internal gear pumps for automobiles. Additionally, it presents a new mathematical model reflecting the influence of the oil temperature on the friction torque. In an internal gear pump, the friction torque was affected by oil temperature as well as operating pressure and pump speed. When the operating pressure was high, the influence of oil temperature on friction torque at a pump speed of less than 1000 r/min was contrary to that at a pump speed of greater than 1000 r/min. It was considered that the friction torque is fundamentally composed of three components: the component dependent on the operating pressure, dependent on the pump speed, and independent of both the operating pressure and the pump speed. However, the component dependent on the operating pressure was affected significantly by not only the pump speed but also the oil temperature. In addition, another factor besides the viscosity of the oil existed in the component dependent on the pump speed. A mathematical model for the friction torque characteristic of the internal gear pump was newly established by adding factors including the oil temperature to the Wilson's model. The new model was able to represent with accuracy the experimental friction torque characteristic in the internal gear pump under various pump operating conditions. © Authors 2011.


Patent
Pump Engineering | Date: 2014-09-05

An air-driven pump system comprising: a directional unit that defines a directional air chamber and comprises a directional piston, a first process air intake, and a second process air intake; two pump units each including a liquid chamber, an air chamber, and a piston; a shaft affixed to the pistons; an efficiency valve system comprising an efficiency piston, wherein the efficiency unit is configured to divide inlet air entering the air-driven piston pump into control air, first process air, and second process air, and wherein the efficiency piston is in communication with the control air, first process air, and second process air before the air is distributed to the directional unit; and a second shaft which is in communication with the efficiency piston. The efficiency valve system is to prevent overfilling of the air chambers.


Patent
Pump Engineering | Date: 2015-01-29

An elongate air operated pump includes a pump chamber, a bladder inside the pump chamber, inlet and outlet valves to and from the chamber and an air control system. The air control system includes a control valve alternately communicating compressed air and exhaust to atmosphere to a venturi with a first end, a second end and a throat port. The first end of the venturi receives continuous compressed air. The second end receives the alternately communication of compressed air and exhaust to atmosphere from the control valve. The throat port of the venturi is in continuous communication with the bladder to pressurize and draw a vacuum on the bladder. The valves may be pneumatic pinch valves controlled by the control valve to cycle with the bladder or passive one-way pump valves.


Patent
Pump Engineering | Date: 2016-03-24

An air-driven pump includes a source of compressed air, a vacuum source including a venturi and two pump units with structurally independent pumping elements dividing pump chambers from air chambers. A directional control valve is in communication with the source of compressed air, the vacuum source, the pump unit air chambers. The directional control valve includes two valve positions alternating communication of the source of compressed air and the vacuum source with the air chambers. A pilot valve system shifts the directional control valve between the two valve positions at end of stroke positions of the pump and includes actuators extending into the air chambers to engage the pumping elements with the air chambers contracted.


Patent
Pump Engineering | Date: 2015-10-23

An air motor has a source of pressurized air, two air chambers, a pilot valve and a directional control valve. The spool of the directional control valve is of the unbalanced type and includes a piston surface in continuous communication with atmosphere through an exhaust port and a pressurized restricted port in alternating communication with the large end of the spool and the piston surface. The alternating communication of the source of pressurized air through the restricted port is restricted relative to the continuous communication of the piston surface with atmosphere. At the point of shift of the directional control valve, the piston surface is in communication with the source of pressurized air through the restricted port.


Trademark
Pump Engineering | Date: 2015-12-29

Automatic surge damper fluid pump apparatus.

Loading Pump Engineering collaborators
Loading Pump Engineering collaborators