Entity

Time filter

Source Type

Vancouver, Canada

FPInnovations is a Canadian non-profit member organization which carries out scientific research and technology transfer for the Canadian forest industry, based on priorities set by the company's members. The company's headquarters are located in Pointe-Claire, Quebec, and has its main research centers located in Vancouver, Quebec City, and Pointe-Claire, but also has many regional offices located throughout the country. Wikipedia.


Kelly J.A.,University of British Columbia | Giese M.,University of British Columbia | Shopsowitz K.E.,University of British Columbia | Hamad W.Y.,Pulp and Paper Research Institute of Canada | MacLachlan M.J.,University of British Columbia
Accounts of Chemical Research | Year: 2014

ConspectusCellulose nanocrystals (CNCs) are obtained from the sulfuric acid-catalyzed hydrolysis of bulk cellulose. The nanocrystals have diameters of ∼5-15 nm and lengths of ∼100-300 nm (depending on the cellulose source and hydrolysis conditions). This lightweight material has mostly been investigated to reinforce composites and polymers because it has remarkable strength that rivals carbon nanotubes. But CNCs have an additional, less explored property: they organize into a chiral nematic (historically referred to as cholesteric) liquid crystal in water. When dried into a thin solid film, the CNCs retain the helicoidal chiral nematic order and assemble into a layered structure where the CNCs have aligned orientation within each layer, and their orientation rotates through the stack with a characteristic pitch (repeating distance). The cholesteric ordering can act as a 1-D photonic structure, selectively reflecting circularly polarized light that has a wavelength nearly matching the pitch.During CNC self-assembly, it is possible to add sol-gel precursors, such as Si(OMe)4, that undergo hydrolysis and condensation as the solvent evaporates, leading to a chiral nematic silica/CNC composite material. Calcination of the material in air destroys the cellulose template, leaving a high surface area mesoporous silica film that has pore diameters of ∼3-10 nm. Importantly, the silica is brilliantly iridescent because the pores in its interior replicate the chiral nematic structure. These films may be useful as optical filters, reflectors, and membranes.In this Account, we describe our recent research into mesoporous films with chiral nematic order. Taking advantage of the chiral nematic order and nanoscale of the CNC templates, new functional materials can be prepared. For example, heating the silica/CNC composites under an inert atmosphere followed by removal of the silica leaves highly ordered, mesoporous carbon films that can be used as supercapacitor electrodes. The composition of the mesoporous films can be varied by using assorted organosilica precursors. After removal of the cellulose by acid-catalyzed hydrolysis, highly porous, iridescent organosilica films are obtained. These materials are flexible and offer the ability to tune the chemical and mechanical properties through variation of the organic spacer.Chiral nematic mesoporous silica and organosilica materials, obtainable as centimeter-scale freestanding films, are interesting hosts for nanomaterials. When noble metal nanoparticles are incorporated into the pores, they show strong circular dichroism signals associated with their surface plasmon resonances that arise from dipolar coupling of the particles within the chiral nematic host. Fluorescent conjugated polymers show induced circular dichroism spectra when encapsulated in the chiral nematic host. The porosity, film structure, and optical properties of these materials could enable their use in sensors.We describe the development of chiral nematic mesoporous silica and organosilica, demonstrate different avenues of host-guest chemistry, and identify future directions that exploit the unique combination of properties present in these materials. The examples covered in this Account demonstrate that there is a rich diversity of composite materials accessible using CNC templating. © 2014 American Chemical Society.


Shopsowitz K.E.,University of British Columbia | Hamad W.Y.,Pulp and Paper Research Institute of Canada | MacLachlan M.J.,University of British Columbia
Angewandte Chemie - International Edition | Year: 2011

Twisted organization: Pyrolysis of nanocrystalline cellulose (NCC)/silica composite films leads to mesoporous carbon materials with long-range chiral organization (see picture). The NCC acts as a template and the resulting mesoporous carbon has a high specific surface area (>1400 m 2 g -1) and accurately replicates the left-handed helical structure of the chiral nematic NCC films. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.


Khan M.K.,University of British Columbia | Hamad W.Y.,Pulp and Paper Research Institute of Canada | Maclachlan M.J.,University of British Columbia
Advanced Materials | Year: 2014

Chiral nematic structures with different helical pitch from layer to layer are embedded into phenol-formaldehyde bilayer resin composite films using cellulose nanocrystals (CNCs) as templates. Selective removal of CNCs results in mesoporous resins with different pore size and helical pitch between the layers. Consequently, these materials exhibit photonic properties by selectively reflecting lights of two different wavelengths and concomitant actuation properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Patent
Pulp and Paper Research Institute of Canada | Date: 2015-10-06

There are provided gypsum panels, sheets and multi-layer sheets as well as methods of preparation thereof. For example, there are provided cellulose filament-reinforced gypsum panels, sheets and multi-layer sheets and methods of preparation thereof. For example, in such gypsum panels, sheets and multi-layer sheets gypsum is bound with cellulose filaments to strengthen the gypsum panels, sheets and multi-layer sheets. The cellulose filament-reinforced gypsum panel can be, for example, a core comprising a honeycomb or corrugated structure. There are also provided aqueous suspensions comprising cellulose filaments and CaSO


The present invention relates to a microwave interactive susceptor structure for the microwave heating of food products. In one aspect, the invention relates to a duplex design for the microwave interactive structure on cellulose-based substrates. In another aspect, the invention relates to a method of patterning the duplex microwave interactive structure on the substrates using a printing press with or without an alignment function.

Discover hidden collaborations