Public Health Emergency Center

Beijing, China

Public Health Emergency Center

Beijing, China
Time filter
Source Type

Yu H.,Centers for Disease Control and Prevention | Liao Q.,Centers for Disease Control and Prevention | Zhou S.,Centers for Disease Control and Prevention | Zhou H.,Centers for Disease Control and Prevention | And 10 more authors.
The Lancet | Year: 2014

Background: Transmission of the novel avian influenza A H7N9 virus seems to be predominantly between poultry and people. In the major Chinese cities of Shanghai, Hangzhou, Huzhou, and Nanjing-where most human cases of infection have occurred-live poultry markets (LPMs) were closed in April, 2013, soon after the initial outbreak, as a precautionary public health measure. Our objective was to quantify the effect of LPM closure in these cities on poultry-to-person transmission of avian influenza A H7N9 virus. Methods: We obtained information about every laboratory-confirmed human case of avian influenza A H7N9 virus infection reported in the four cities by June 7, 2013, from a database built by the Chinese Center for Disease Control and Prevention. We used data for age, sex, location, residence type (rural or urban area), and dates of illness onset. We obtained information about LPMs from official sources. We constructed a statistical model to explain the patterns in incidence of cases reported in each city on the basis of the assumption of a constant force of infection before LPM closure, and a different constant force of infection after closure. We fitted the model with Markov chain Monte Carlo methods. Findings: 85 human cases of avian influenza A H7N9 virus infection were reported in Shanghai, Hangzhou, Huzhou, and Nanjing by June 7, 2013, of which 60 were included in our main analysis. Closure of LPMs reduced the mean daily number of infections by 99% (95% credibility interval 93-100%) in Shanghai, by 99% (92-100%) in Hangzhou, by 97% (68-100%) in Huzhou, and by 97% (81-100%) in Nanjing. Because LPMs were the predominant source of exposure to avian influenza A H7N9 virus for confirmed cases in these cities, we estimated that the mean incubation period was 3·3 days (1·4-5·7). Interpretation: LPM closures were effective in the control of human risk of avian influenza A H7N9 virus infection in the spring of 2013. In the short term, LPM closure should be rapidly implemented in areas where the virus is identified in live poultry or people. In the long term, evidence-based discussions and deliberations about the role of market rest days and central slaughtering of all live poultry should be renewed.

Li Q.,Public Health Emergency Center | Zhou L.,Public Health Emergency Center | Zhou M.,U.S. Center for Disease Control and Prevention | Chen Z.,U.S. Center for Disease Control and Prevention | And 42 more authors.
New England Journal of Medicine | Year: 2014

BACKGROUND: The first identified cases of avian influenza A(H7N9) virus infection in humans occurred in China during February and March 2013. We analyzed data obtained from field investigations to describe the epidemiologic characteristics of H7N9 cases in China identified as of December 1, 2013. METHODS: Field investigations were conducted for each confirmed case of H7N9 virus infection. A patient was considered to have a confirmed case if the presence of the H7N9 virus was verified by means of real-time reverse-transcriptase-polymerase-chainreaction assay (RT-PCR), viral isolation, or serologic testing. Information on demographic characteristics, exposure history, and illness timelines was obtained from patients with confirmed cases. Close contacts were monitored for 7 days for symptoms of illness. Throat swabs were obtained from contacts in whom symptoms developed and were tested for the presence of the H7N9 virus by means of real-time RT-PCR. RESULTS: Among 139 persons with confirmed H7N9 virus infection, the median age was 61 years (range, 2 to 91), 71% were male, and 73% were urban residents. Confirmed cases occurred in 12 areas of China. Nine persons were poultry workers, and of 131 persons with available data, 82% had a history of exposure to live animals, including chickens (82%). A total of 137 persons (99%) were hospitalized, 125 (90%) had pneumonia or respiratory failure, and 65 of 103 with available data (63%) were admitted to an intensive care unit. A total of 47 persons (34%) died in the hospital after a median duration of illness of 21 days, 88 were discharged from the hospital, and 2 remain hospitalized in critical condition; 2 patients were not admitted to a hospital. In four family clusters, human-to-human transmission of H7N9 virus could not be ruled out. Excluding secondary cases in clusters, 2675 close contacts of case patients completed the monitoring period; respiratory symptoms developed in 28 of them (1%); all tested negative for H7N9 virus. CONCLUSIONS: Most persons with confirmed H7N9 virus infection had severe lower respiratory tract illness, were epidemiologically unrelated, and had a history of recent exposure to poultry. However, limited, nonsustained human-to-human H7N9 virus transmission could not be ruled out in four families. Copyright © 2013 Massachusetts Medical Society.

PubMed | Columbia University, Institute of Environmental Health and Related Product Safety and Public health Emergency Center
Type: | Journal: Scientific reports | Year: 2016

The impact of major heatwave shocks on population morbidity and mortality has become an urgent public health concern. However, Current heatwave warning systems suffer from a lack of validation and an inability to provide accurate health risk warnings in a timely way. Here we conducted a correlation and linear regression analysis to test the relationship between heat stroke internet searches and heat stroke health outcomes in Shanghai, China, during the summer of 2013. We show that the resulting heatstroke index captures much of the variation in heat stroke cases and deaths. The correlation between heat stroke deaths, the search index and the incidence of heat stroke is higher than the correlation with maximum temperature. This study highlights a fast and effective heatwave health warning indicator with potential to be used throughout the world.

PubMed | National Center for Control and Prevention, Centers for Disease Control and Prevention, China Population Communication Center, Health News and 14 more.
Type: Journal Article | Journal: Infectious diseases of poverty | Year: 2016

The Ebola virus disease spread rapidly in West Africa in 2014, leading to the loss of thousands of lives. Community engagement was one of the key strategies to interrupt Ebola transmission, and practical community level measures needed to be explored in the field and tailored to the specific context of communities.First, community-level education on Ebola virus disease (EVD) prevention was launched for the communitys social mobilizers in six districts in Sierra Leone beginning in November 2014. Then, from January to May of 2015, in three pilot communities, local trained community members were organized to engage in implementation of EVD prevention and transmission interruption measures, by involving them in alert case report, contact tracing, and social mobilization. The epidemiological indicators of transmission interruption in three study communities were evaluated.A total of 6 016 community social mobilizers from 185 wards were trained by holding 279 workshops in the six districts, and EVD message reached an estimated 631 680 residents. In three pilot communities, 72 EVD alert cases were reported, with 70.8% of them detected by trained local community members, and 14 EVD cases were finally identified. Contact tracing detected 64.3% of EVD cases. The median duration of community infectivity for the cases was 1day. The secondary attack rate was 4.2%, and no third generation of infection was triggered. No health worker was infected, and no unsafe burial and noncompliance to EVD control measures were recorded. The community-based measures were modeled to reduce 77 EVD cases, and the EVD-free goal was achieved four months earlier in study communities than whole country of Sierra Leone.The community-based strategy of social mobilization and community engagement was effective in case detection and reducing the extent of Ebola transmission in a country with weak health system. The successfully practical experience to reduce the risk of Ebola transmission in the community with poor resources would potentially be helpful for the global community to fight against the EVD and the other diseases in the future.

Cowling B.J.,University of Hong Kong | Jin L.,Public Health Emergency Center | Lau E.H.Y.,University of Hong Kong | Liao Q.,Centers for Disease Control and Prevention | And 24 more authors.
The Lancet | Year: 2013

Summary Background The novel influenza A H7N9 virus emerged recently in mainland China, whereas the influenza A H5N1 virus has infected people in China since 2003. Both infections are thought to be mainly zoonotic. We aimed to compare the epidemiological characteristics of the complete series of laboratory-confirmed cases of both viruses in mainland China so far. Methods An integrated database was constructed with information about demographic, epidemiological, and clinical variables of laboratory-confirmed cases of H7N9 (130 patients) and H5N1 (43 patients) that were reported to the Chinese Centre for Disease Control and Prevention until May 24, 2013. We described disease occurrence by age, sex, and geography, and estimated key epidemiological variables. We used survival analysis techniques to estimate the following distributions: infection to onset, onset to admission, onset to laboratory confirmation, admission to death, and admission to discharge. Findings The median age of the 130 individuals with confirmed infection with H7N9 was 62 years and of the 43 with H5N1 was 26 years. In urban areas, 74% of cases of both viruses were in men, whereas in rural areas the proportions of the viruses in men were 62% for H7N9 and 33% for H5N1. 75% of patients infected with H7N9 and 71% of those with H5N1 reported recent exposure to poultry. The mean incubation period of H7N9 was 3·1 days and of H5N1 was 3·3 days. On average, 21 contacts were traced for each case of H7N9 in urban areas and 18 in rural areas, compared with 90 and 63 for H5N1. The fatality risk on admission to hospital was 36% (95% CI 26-45) for H7N9 and 70% (56-83%) for H5N1. Interpretation The sex ratios in urban compared with rural cases are consistent with exposure to poultry driving the risk of infection - a higher risk in men was only recorded in urban areas but not in rural areas, and the increased risk for men was of a similar magnitude for H7N9 and H5N1. However, the difference in susceptibility to serious illness with the two different viruses remains unexplained, since most cases of H7N9 were in older adults whereas most cases of H5N1 were in younger people. A limitation of our study is that we compared laboratory-confirmed cases of H7N9 and H5N1 infection, and some infections might not have been ascertained. Funding Ministry of Science and Technology, China; Research Fund for the Control of Infectious Disease and University Grants Committee, Hong Kong Special Administrative Region, China; and the US National Institutes of Health. © 2013 Elsevier Ltd.

Hu J.,Centers for Disease Control and Prevention | Zhu Y.,Centers for Disease Control and Prevention | Zhao B.,Centers for Disease Control and Prevention | Li J.,Centers for Disease Control and Prevention | And 9 more authors.
Eurosurveillance | Year: 2014

In April 2013, two members of one family were successively confirmed as cases of avian influenza A(H7N9) virus infection in Shanghai, China. Respiratory specimens from the two cases and their close contacts were tested using real-time reverse-transcription (RT)-PCR. Paired serum specimens from contacts were tested by haemagglutination inhibition assay and microneutralisation test. The index patient developed severe pneumonia. Her husband presented with pneumonia shortly thereafter. Both cases had highly similar clinical features and infection with A(H7N9) virus was confirmed in both cases by genetic analysis. Phylogenetic analysis revealed a high level of similarity between the sequences from the two patients and environmental samples collected from wet markets in Minhang and Changning districts. Six samples from the Changning wet market were confirmed as A(H7N9) positive. Of 27 close contacts, one developed mild respiratory symptoms and another tested positive for A(H7N9) antibodies, but both were negative by real-time RT-PCR. The other 25 close contacts of both cases were A(H7N9) negative. Limited human-to-human transmission of the virus most likely occurred in the family cluster. However, other close contacts did not test positive for the virus, suggesting limited potential for extensive human-to-human transmission of the virus. © 2014, European Centre for Disease Prevention and Control (ECDC). All rights reserved.

Yu H.,Centers for Disease Control and Prevention | Cowling B.J.,University of Hong Kong | Feng L.,Centers for Disease Control and Prevention | Lau E.H.Y.,University of Hong Kong | And 19 more authors.
The Lancet | Year: 2013

Summary Background Characterisation of the severity profile of human infections with influenza viruses of animal origin is a part of pandemic risk assessment, and an important part of the assessment of disease epidemiology. Our objective was to assess the clinical severity of human infections with avian influenza A H7N9 virus, which emerged in China in early 2013. Methods We obtained information about laboratory-confirmed cases of avian influenza A H7N9 virus infection reported as of May 28, 2013, from an integrated database built by the Chinese Center for Disease Control and Prevention. We estimated the risk of fatality, mechanical ventilation, and admission to the intensive care unit for patients who required hospital admission for medical reasons. We also used information about laboratory-confirmed cases detected through sentinel influenza-like illness surveillance to estimate the symptomatic case fatality risk. Findings Of 123 patients with laboratory-confirmed avian influenza A H7N9 virus infection who were admitted to hospital, 37 (30%) had died and 69 (56%) had recovered by May 28, 2013. After we accounted for incomplete data for 17 patients who were still in hospital, we estimated the fatality risk for all ages to be 36% (95% CI 26-45) on admission to hospital. Risks of mechanical ventilation or fatality (69%, 95% CI 60-77) and of admission to an intensive care unit, mechanical ventilation, or fatality (83%, 76-90) were high. With assumptions about coverage of the sentinel surveillance network and health-care-seeking behaviour for patients with influenza-like illness associated with influenza A H7N9 virus infection, and pro-rata extrapolation, we estimated that the symptomatic case fatality risk could be between 160 (63-460) and 2800 (1000-9400) per 100â€̂000 symptomatic cases. Interpretation Human infections with avian influenza A H7N9 virus seem to be less serious than has been previously reported. Many mild cases might already have occurred. Continued vigilance and sustained intensive control efforts are needed to minimise the risk of human infection. Funding Chinese Ministry of Science and Technology; Research Fund for the Control of Infectious Disease; Hong Kong University Grants Committee; China-US Collaborative Program on Emerging and Re-emerging Infectious Diseases; Harvard Center for Communicable Disease Dynamics; US National Institute of Allergy and Infectious Disease; and the US National Institutes of Health. © 2013 Elsevier Ltd.

Loading Public Health Emergency Center collaborators
Loading Public Health Emergency Center collaborators