Entity

Time filter

Source Type


Filipic J.,Ptuj Municipal Service Corporation | Filipic J.,University of Ljubljana | Kraigher B.,University of Ljubljana | Tepus B.,Ptuj Municipal Service Corporation | And 2 more authors.
Food Technology and Biotechnology | Year: 2015

Ammonium removal is a key step in biological wastewater treatment and novel approaches that improve this process are in great demand. The aim of this study is to test the hypothesis that ammonium removal from wastewater can be stimulated by static magnetic fields. This was achieved by analysis of the effects of static magnetic field (SMF) on the growth and activity of Nitrosomonas europaea, a key ammonia-oxidising bacterium, where increased growth and increased ammonia oxidation rate were detected when bacteria were exposed to SMF at 17 mT. Additionally, the effect of SMF on mixed cultures of ammonia oxidisers in activated sludge, incubated in sequencing batch bioreactors simulating wastewater treatment process, was assessed. SMFs of 30 and 50 mT, but not of 10 mT, increased ammonium oxidation rate in municipal wastewater by up to 77 % and stimulated ammonia oxidiser growth. The results demonstrate the potential for use of static magnetic fields in increasing ammonium removal rates in biological wastewater treatment plants. Source


Filipic J.,Ptuj Municipal Service Corporation | Filipic J.,University of Ljubljana | Kraigher B.,University of Ljubljana | Tepus B.,Ptuj Municipal Service Corporation | And 2 more authors.
Bioresource Technology | Year: 2012

The aim of this study was to explore the influence of a moderate static magnetic field (SMF) of different densities on Escherichia coli and Pseudomonas putida that are commonly found in wastewater treatment plants. In line with literature reports that SMF increases the efficiency of wastewater treatment the findings of this study indicated that SMF negatively influenced the growth but positively influenced the enzymatic activities and ATP levels of the two model bacteria. The inhibitory effect of SMF on growth of E. coli and P. putida was most pronounced at their optimal growth temperature (37. °C and 28. °C respectively) and was reversible shortly after the SMF had been terminated. Finally, the results suggested that the induced energy metabolism reflected in higher dehydrogenase activities and ATP levels may be more important for survival, and adaptation to SMF induced stress than the increase in the expression of the rpoS gene. © 2012. Source

Discover hidden collaborations