Time filter

Source Type

Jakarta, Indonesia

Rusdinar Y.,PT Freeport Indonesia | Edraki M.,University of Queensland | Baumgartl T.,University of Queensland | Mulligan D.,University of Queensland | Miller S.,Environmental Geochemistry International Pty Ltd
Mine Water and the Environment | Year: 2013

Steep terrain, intense rainfall, and seismic activity precluded use of conventional tailings storage facilities at the PT Freeport Indonesia (PTFI) copper-gold mine, in Papua, Indonesia. A controlled river tailings system was adopted as the only feasible way to manage the tailings. The tailings are transported to an engineered 230 km2 deposition area, which is bounded by levees on the east and west sides and is open on the south side to allow transport water and surges of rainfall to exit the area. We evaluated the performance of the ore-fed blending strategy for managing potential acid rock drainage formation of the tailings. Long-term leaching column tests and monitoring of deposited tailings provided insight on the reactivity, leaching behaviours, and neutralizing potential of the samples, and the ratio of acid neutralizing capacity (ANC): maximum potential acidity (MPA) that would ensure that the deposited tailings remain non-acid forming. We concluded that an ANC/MPA ratio >1. 5 provides an adequate factor of safety to prevent acid generation and ensure long-term geochemical stability of the deposited tailings. © 2013 Springer-Verlag Berlin Heidelberg. Source

Sinka M.E.,University of Oxford | Bangs M.J.,PT Freeport Indonesia | Manguin S.,CIRAD - Agricultural Research for Development | Chareonviriyaphap T.,Kasetsart University | And 8 more authors.
Parasites and Vectors | Year: 2011

Background: The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Results: Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. Conclusions: This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps. © 2011 Sinka et al; licensee BioMed Central Ltd. Source

Tisgratog R.,Kasetsart University | Tananchai C.,Kasetsart University | Bangs M.J.,PT Freeport Indonesia | Tainchum K.,Kasetsart University | And 5 more authors.
Journal of Vector Ecology | Year: 2011

Behavioral responses of female mosquitoes representing two species in the Minimus Complex exposed to an operational field dose of bifenthrin or DEET (N,N-diethyl-m-toluamide) were described using an excito-repellency test system. Two test populations of An. minimus, one from the field (Tak Province, western Thailand), the other from a long-established laboratory colony, and Anopheles harrisoni collected from Kanchanaburi Province, western Thailand, were used. Results showed that all test populations rapidly escaped after direct contact with surfaces treated with either bifenthrin or DEET compared to match-paired untreated controls. Greater escape response by exposed females to bifenthrin and DEET were observed in the An. minimus colony compared to the two field populations. Field-collected An. minimus demonstrated a more rapid escape response to DEET than to bifenthrin, whereas An. harrisoni showed a converse response. Although fewer females escaped from test chambers without direct contact with treated surfaces compared to contact tests, the spatial repellency response was significantly pronounced in all test populations compared to match-paired controls (P < 0.05). DEET was found to perform as both a contact stimulant and moderate spatial repellent. © 2011 The Society for Vector Ecology. Source

Sinka M.E.,University of Oxford | Bangs M.J.,PT Freeport Indonesia | Manguin S.,CIRAD - Agricultural Research for Development | Rubio-Palis Y.,University of Carabobo | And 13 more authors.
Parasites and Vectors | Year: 2012

Background: Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach. Methods. Here we describe the generation of a global map of the dominant vector species (DVS) of malaria that makes use of predicted distribution maps for individual species or species complexes. Results: Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance. Conclusions: The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request) will be made directly available via the Malaria Atlas Project (MAP) website from early 2012. © 2012 Sinka et al; licensee BioMed Central Ltd. Source

Sinka M.E.,University of Oxford | Bangs M.J.,PT Freeport Indonesia | Manguin S.,CIRAD - Agricultural Research for Development | Coetzee M.,University of Witwatersrand | And 13 more authors.
Parasites and Vectors | Year: 2010

Background. This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. Results. A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method. Conclusions. The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern Region: An. (Anopheles) atroparvus, An. (Ano.) labranchiae, An. (Ano.) messeae, An. (Ano.) sacharovi, An. (Cel.) sergentii and An. (Cel.) superpictus*. These maps are presented alongside a bionomics summary for each species relevant to its control. © 2010 Sinka et al; licensee BioMed Central Ltd. Source

Discover hidden collaborations