Psoma Therapeutics Inc.

Seoul, South Korea

Psoma Therapeutics Inc.

Seoul, South Korea
Time filter
Source Type

Hwang Y.,Brain Bio | Kim J.,Brain Bio | Shin J.-Y.,Seoul National University | Shin J.-Y.,Psoma Therapeutics Inc | And 8 more authors.
Translational Psychiatry | Year: 2013

Whole-genome expression profiling in postmortem brain tissue has recently provided insight into the pathophysiology of schizophrenia. Previous microarray and RNA-Seq studies identified several biological processes including synaptic function, mitochondrial function and immune/inflammation response as altered in the cortex of subjects with schizophrenia. Now using RNA-Seq data from the hippocampus, we have identified 144 differentially expressed genes in schizophrenia cases as compared with unaffected controls. Immune/inflammation response was the main biological process over-represented in these genes. The upregulation of several of these genes, IFITM1, IFITM2, IFITM3, APOL1 (Apolipoprotein L1), ADORA2A (adenosine receptor 2A), IGFBP4 and CD163 were validated in the schizophrenia subjects using data from the SNCID database and with quantitative RT-PCR. We identified a co-expression module associated with schizophrenia that includes the majority of differentially expressed genes related to immune/inflammation response as well as with the density of parvalbumin-containing neurons in the hippocampus. The results indicate that abnormal immune/inflammation response in the hippocampus may underlie the pathophysiology of schizophrenia and may be associated with abnormalities in the parvalbumin-containing neurons that lead to the cognitive deficits of the disease. © 2013 Macmillan Publishers Limited All rights reserved.

Park H.,Seoul National University | Park H.,Brigham and Women's Hospital | Park H.,Harvard University | Park H.,Psoma Therapeutics Inc. | And 38 more authors.
Nature Genetics | Year: 2010

Copy number variants (CNVs) account for the majority of human genomic diversity in terms of base coverage. Here, we have developed and applied a new method to combine high-resolution array comparative genomic hybridization (CGH) data with whole-genome DNA sequencing data to obtain a comprehensive catalog of common CNVs in Asian individuals. The genomes of 30 individuals from three Asian populations (Korean, Chinese and Japanese) were interrogated with an ultra-high-resolution array CGH platform containing 24 million probes. Whole-genome sequencing data from a reference genome (NA10851, with 28.3× coverage) and two Asian genomes (AK1, with 27.8× coverage and AK2, with 32.0× coverage) were used to transform the relative copy number information obtained from array CGH experiments into absolute copy number values. We discovered 5,177 CNVs, of which 3,547 were putative Asian-specific CNVs. These common CNVs in Asian populations will be a useful resource for subsequent genetic studies in these populations, and the new method of calling absolute CNVs will be essential for applying CNV data to personalized medicine. © 2010 Nature America, Inc. All rights reserved.

Lee J.,Veterans Affairs Boston Healthcare System | Lee J.,Boston University | Hwang Y.J.,Seoul National University | Shin J.-Y.,Seoul National University | And 16 more authors.
Acta Neuropathologica | Year: 2013

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded trinucleotide CAG repeat in the gene coding for huntingtin. Deregulation of chromatin remodeling is linked to the pathogenesis of HD but the mechanism remains elusive. To identify what genes are deregulated by trimethylated histone H3K9 (H3K9me3)-dependent heterochromatin, we performed H3K9me3-ChIP genome-wide sequencing combined with RNA sequencing followed by platform integration analysis in stable striatal HD cell lines (STHdhQ7/7 and STHdhQ111/111) cells. We found that genes involving neuronal synaptic transmission including cholinergic receptor M1 (CHRM1), cell motility, and neuronal differentiation pathways are downregulated while their promoter regions are highly occupied with H3K9me3 in HD. Moreover, we found that repression of CHRM1 gene expression by H3K9me3 impairs Ca2+-dependent neuronal signal transduction in stable cell lines expressing mutant HD protein. Thus, our data indicate that the epigenetic modifications, such as aberrant H3K9me3-dependent heterochromatin plasticity, directly contribute to the pathogenesis of HD. © Springer-Verlag Berlin Heidelberg 2013.

Hong D.,Seoul National University | Hong D.,Cancer Genomics Branch and Research Institute and Hospital | Rhie A.,Seoul National University | Rhie A.,Ewha Womans University | And 19 more authors.
Bioinformatics | Year: 2012

Summary: FX is an RNA-Seq analysis tool, which runs in parallel on cloud computing infrastructure, for the estimation of gene expression levels and genomic variant calling. In the mapping of short RNA-Seq reads, FX uses a transcriptome-based reference primarily, generated from ~160 000 mRNA sequences from RefSeq, UCSC and Ensembl databases. This approach reduces the misalignment of reads originating from splicing junctions. Unmapped reads not aligned on known transcripts are then mapped on the human genome reference. FX allows analysis of RNA-Seq data on cloud computing infrastructures, supporting access through a user-friendly web interface. © The Author 2012. Published by Oxford University Press. All rights reserved.

Shin J.,Seoul National University | Shin J.,Psoma Therapeutics Inc. | Yu S.-B.,Seoul National University | Yu S.-B.,Psoma Therapeutics Inc. | And 3 more authors.
BMB Reports | Year: 2010

The Swedish mutation (K595N/M596L) of amyloid precursor protein (APP-swe) has been known to increase abnormal cleavage of cellular APP by Beta-secretase (BACE), which causes tau protein hyperphosphorylation and early-onset Alzheimer's disease (AD). Here, we analyzed the effect of APP-swe in global gene expression using deep transcriptome sequencing technique. We found 283 genes were down-regulated and 348 genes were up-regulated in APP-swe expressing H4-swe cells compared to H4 wild-type cells from a total of approximately 74 million reads of 38 base pairs from each transcriptome. Two independent mechanisms such as kinase and phosphatase signaling cascades leading hyperphosphorylation of tau protein were regulated by the expression of APP-swe. Expressions of catalytic subunit as well as several regulatory subunits of protein phosphatases 2A were decreased. In contrast, expressions of tau-phosphorylating glycogen synthase kinase 3β (GSK-3β), cyclin dependent kinase 5 (CDK5), and cAMP-dependent protein kinase A (PKA) catalytic subunit were increased. Moreover, the expression of AD-related Aquaporin 1 and presenilin 2 expression was regulated by APP-swe. Taken together, we propose that the expression of APP-swe modulates global gene expression directed to AD pathogenesis.

Seo J.-S.,Seoul National University | Seo J.-S.,Macrogen Inc. | Seo J.-S.,Psoma Therapeutics Inc. | Ju Y.S.,Macrogen Inc. | And 20 more authors.
Genome Research | Year: 2012

All cancers harbor molecular alterations in their genomes. The transcriptional consequences of these somatic mutations have not yet been comprehensively explored in lung cancer. Here we present the first large scale RNA sequencing study of lung adenocarcinoma, demonstrating its power to identify somatic point mutations as well as transcriptional variants such as gene fusions, alternative splicing events, and expression outliers. Our results reveal the genetic basis of 200 lung adenocarcinomas in Koreans including deep characterization of 87 surgical specimens by transcriptome sequencing. We identified driver somatic mutations in cancer genes including EGFR, KRAS, NRAS, BRAF, PIK3CA, MET, and CTNNB1. Candidates for novel driver mutations were also identified in genes newly implicated in lung adenocarcinoma such as LMTK2, ARID1A, NOTCH2, and SMARCA4. We found 45 fusion genes, eight of which were chimeric tyrosine kinases involving ALK, RET, ROS1, FGFR2, AXL, and PDGFRA. Among 17 recurrent alternative splicing events, we identified exon 14 skipping in the protooncogene MET as highly likely to be a cancer driver. The number of somatic mutations and expression outliers varied markedly between individual cancers and was strongly correlated with smoking history of patients. We identified genomic blocks within which gene expression levels were consistently increased or decreased that could be explained by copy number alterations in samples. We also found an association between lymph node metastasis and somatic mutations in TP53. These findings broaden our understanding of lung adenocarcinoma and may also lead to new diagnostic and therapeutic approaches. © 2012, Published by Cold Spring Harbor Laboratory Press.

Kim K.H.,Seoul National University | Moon M.,Seoul National University | Yu S.-B.,Psoma Therapeutics Inc. | Mook-Jung I.,Seoul National University | And 2 more authors.
Journal of Alzheimer's Disease | Year: 2012

The pathogenesis of Alzheimer's disease (AD), especially the early events of AD pathology, remains unknown because of the complexity of AD and limitation of analysis methods. Transcriptome analysis has provided comprehensive insights to investigate the complex cellular activity in brain, but the transcriptome profiles from AD patients with microarray have generated discordant results. Here, for the first time, we performed transcriptome analysis of frontal cortex and cerebellum in 7-week-old 5XFAD transgenic mice (before extracellular amyloid plaque deposits) using high-throughput RNA-Seq analysis. Specific functional annotations were identified with differentially expressed genes (DEGs) of frontal cortex (a typically vulnerable region of AD pathology) and cerebellum (a typically non-vulnerable region of AD pathology). Cardiovascular disease-related genes were significantly found in down-regulated DEGs of frontal cortex, and mitochondrial dysfunction-related genes were evident in down-regulated DEGs of cerebellum. Additionally, we found RNA variants at the nucleotide level in transgenic mice compared with non-transgenic mice. Our results indicate that both frontal cortex and cerebellum in 5XFAD transgenic mice show specific pathological processes in the early pathophysiology of AD. © 2012-IOS Press and the authors. All rights reserved.

Ju Y.S.,Seoul National University | Ju Y.S.,Macrogen Inc. | Kim J.-I.,Seoul National University | Kim J.-I.,Psoma Therapeutics Inc. | And 28 more authors.
Nature Genetics | Year: 2011

Massively parallel sequencing technologies have identified a broad spectrum of human genome diversity. Here we deep sequenced and correlated 18 genomes and 17 transcriptomes of unrelated Korean individuals. This has allowed us to construct a genome-wide map of common and rare variants and also identify variants formed during DNA-RNA transcription. We identified 9.56 million genomic variants, 23.2% of which appear to be previously unidentified. From transcriptome sequencing, we discovered 4,414 transcripts not previously annotated. Finally, we revealed 1,809 sites of transcriptional base modification, where the transcriptional landscape is different from the corresponding genomic sequences, and 580 sites of allele-specific expression. Our findings suggest that a considerable number of unexplored genomic variants still remain to be identified in the human genome, and that the integrated analysis of genome and transcriptome sequencing is powerful for understanding the diversity and functional aspects of human genomic variants. © 2011 Nature America, Inc. All rights reserved.

Loading Psoma Therapeutics Inc. collaborators
Loading Psoma Therapeutics Inc. collaborators