Time filter

Source Type

Saclay, France

Bau S.,Institute National Of Recherche Et Of Securite | Witschger O.,Institute National Of Recherche Et Of Securite | Gensdarmes F.,PSN RES SCA LPMA | Thomas D.,University of Lorraine
Journal of Nanoparticle Research | Year: 2013

Due to the increasing use of nanomaterials in research and product development, it is probable that the number of situations of occupational exposure to them is also rising. The same is true for the number of workers. Although current research in nanotoxicology is far from conclusive, it is clear that relying on mass concentration and chemical composition alone is not appropriate in all cases and alternative measurement methods and approaches need to be developed. In this work, we propose a method based on simultaneous size-integrated measurements of two particle concentrations (number and lung-deposited surface area, CNC/NSAM), and on the estimation of the average size of potentially inhaled particles from the combination of these measurements. The proposed method could be part of a measurement strategy that is practical as it would use field-portable, commercially available aerosol instruments. In the absence of instruments providing real-time size-resolved measurements, this original approach can be carried out as considering that the ratio of these concentrations is a monotonous function of particle size. Indeed, the latter function depends only on the geometric standard deviation of airborne particle number size distribution, assumed to be lognormal. Compared to SMPS data for polydisperse aerosols having three chemical natures with count median diameters ranging from 64 to 177 nm, experimental results were obtained with acceptable relative discrepancies of ±30%. Though the method proposed is less accurate than traditional instruments like SMPS, it can be used for workplace air monitoring or as a screening tool to detect the presence of airborne nanoparticles. © Springer Science+Business Media 2013.

Yon J.,INSA Rouen | Liu F.,Carbon Black | Bescond A.,INSA Rouen | Caumont-Prim C.,INSA Rouen | And 3 more authors.
Journal of Quantitative Spectroscopy and Radiative Transfer | Year: 2014

The in situ optical characterization of smokes composed of soot particles relies on light extinction, angular static light scattering (SLS), or laser induced incandescence (LII). These measurements are usually interpreted by using the Rayleigh-Debye-Gans theory for Fractal Aggregates (RDG-FA). RDG-FA is simple to use but it completely neglects the impact of multiple scattering (MS) within soot aggregates. In this paper, based on a scaling approach that takes into account MS effects, an extended form of the RDG-FA theory is proposed in order to take into account these effects. The parameters of this extended theory and their dependency on the number of primary sphere inside the aggregate (1 < N p < 1006) and on the wavelength (266 nm < λ < 1064 nm) are evaluated thanks to rigorous calculations based on discrete dipole approximation (DDA) and generalized multi-sphere Mie-solution (GMM) calculations. This study shows that size determination by SLS is not distorted by MS effect. On the contrary, it is shown that fractal dimension can be misinterpreted by light scattering experiments, especially at short wavelengths. MS effects should be taken into account for the interpretation of absorption measurements that are involved in LII or extinction measurements. © 2013 Elsevier Ltd.

Ouf F.-X.,PSN RES SCA LPMA | Mocho V.-M.,PSN RES SCA LPMA | Pontreau S.,PSN RES SCA LPMA | Wang Z.,PSN RES SCA LPMA | And 2 more authors.
Journal of Hazardous Materials | Year: 2015

For industrial concerns, and more especially for nuclear applications, the characterization of soot is essential for predicting the behaviour of containment barriers in fire conditions. This study deals with the characterization (emission factor, composition, size, morphology, microstructure) of particles produced during thermal degradation of materials found in nuclear facilities (electrical cables, polymers, oil and solvents). Small-scale experiments have been conducted for oxygen concentrations [O2] ranging from 15% to 21% in order to imitate the oxygen depletion encountered during a confined fire. Particles denote distinct shapes, from aggregates composed of monomers with diameters ranging from 31.2nm to 52.8nm, to compact nanoparticles with diameters ranging from 15nm to 400nm, and their composition strongly depends on fuel type. Despite the organic to total carbon ratio (OC/TC), their properties are poorly influenced by the decrease in [O2]. Finally, two empirical correlations are proposed for predicting the OC/TC ratio and the monomer diameter, respectively, as a function of the fuel's carbon to hydrogen ratio and the emission factor. © 2014 Elsevier B.V.

Ouf F.-X.,PSN RES SCA LPMA | Mocho V.-M.,PSN RES SCA LPMA | Pontreau S.,PSN RES SCA LPMA | Wang Z.,PSN RES SCA LPMA | And 2 more authors.
Aerosol Science and Technology | Year: 2014

The Institute of Radioprotection and Nuclear Safety (IRSN in French) is conducting research on the impact of a fire on the behaviour of containment devices such as high efficiency particulate air (HEPA) pleated filters for radioactive materials. This work aims to study the clogging of HEPA filters in case of fire involving realistic materials (polymers making up gloves boxes, waste treatment solvent, hydraulic oil, solid material mixtures making up a trash bin, electrical cables, and cabinets) used in nuclear facilities, from the medium to large scale. The clogging kinetics of industrial pleated HEPA filters is monitored by measuring the pressure drop of the filters and the filtered air temperature at a given filtration velocity (from 0.23 to 2.1 cm/s). Upstream HEPA filters, combustion aerosols are characterized in terms of size distribution, mass concentration, composition, and particle morphology using, respectively, a DMS500 (CambustionLTD), glass fiber filter sampling, and transmission electron microscope analysis of particles deposited on TEM grids. Particles emitted denote well-known fractal morphology, are composed of carbonaceous primary particles with diameters ranging from 31 nm to 48 nm and showing an high clogging efficiency. An empirical relationship has been successfully applied to the obtained results for a larger range of fuels, filtration velocities and fire conditions. Finally, experiments have been performed on a large-scale facility, using full-scale fire scenarios (electrical cabinet, constant, and variable filtration velocity) and a reasonable agreement was observed with our empirical relationship. At this scale, particles appear to be compact, with a complex composition and diameters close to 220 nm with a lower clogging efficiency. Copyright © American Association for Aerosol Research.

Peillon S.,PSN RES SCA LPMA | Roynette A.,PSN RES SCA LPMA | Grisolia C.,French Atomic Energy Commission | Gensdarmes F.,PSN RES SCA LPMA
Fusion Engineering and Design | Year: 2014

This work presents the results of experiments conducted with carbon microparticles collected in the tokamak Tore Supra in order to characterize their resuspension behaviour from a stainless-steel substrate when exposed to turbulent airflow. Experiments were conducted in a wind tunnel with controlled velocity profiles and monitored environmental conditions. A consequent amount of dust has been collected in the vessel of the tokamak and a bimodal particle size distribution of samples is first demonstrated. Comparison with resuspension of alumina powders with equivalent particle size distributions under turbulent airflow is also discussed. Results for both carbon and alumina microparticles are then compared to a theoretical resuspension model. Data reveal that exposing multilayer deposits with bimodal particle size distributions to low-speed flows (i.e. 3-10 m/s) induces a significant reduction of the mobilized fractions compared to what was predicted by the model. In addition, results helped to highlight some limitations in the model to physically describe changes in the adhesive strength that can occur with a polydisperse deposit. © 2014 Published by Elsevier B.V.

Discover hidden collaborations