Provinciaal Instituut voor Hygiene

Antwerpen, Belgium

Provinciaal Instituut voor Hygiene

Antwerpen, Belgium
SEARCH FILTERS
Time filter
Source Type

Heijnsdijk E.A.M.,Erasmus Medical Center | Wever E.M.,Erasmus Medical Center | Auvinen A.,University of Tampere | Auvinen A.,International Agency for Research on Cancer | And 20 more authors.
New England Journal of Medicine | Year: 2012

Background: After 11 years of follow-up, the European Randomized Study of Screening for Prostate Cancer (ERSPC) reported a 29% reduction in prostate-cancer mortality among men who underwent screening for prostate-specific antigen (PSA) levels. However, the extent to which harms to quality of life resulting from overdiagnosis and treatment counterbalance this benefit is uncertain. Methods: On the basis of ERSPC follow-up data, we used Microsimulation Screening Analysis (MISCAN) to predict the number of prostate cancers, treatments, deaths, and quality-adjusted life-years (QALYs) gained after the introduction of PSA screening. Various screening strategies, efficacies, and quality-of-life assumptions were modeled. Results: Per 1000 men of all ages who were followed for their entire life span, we predicted that annual screening of men between the ages of 55 and 69 years would result in nine fewer deaths from prostate cancer (28% reduction), 14 fewer men receiving palliative therapy (35% reduction), and a total of 73 life-years gained (average, 8.4 years per prostate-cancer death avoided). The number of QALYs that were gained was 56 (range, -21 to 97), a reduction of 23% from unadjusted life-years gained. To prevent one prostate-cancer death, 98 men would need to be screened and 5 cancers would need to be detected. Screening of all men between the ages of 55 and 74 would result in more life-years gained (82) but the same number of QALYs (56). Conclusions: The benefit of PSA screening was diminished by loss of QALYs owing to postdiagnosis long-term effects. Longer follow-up data from both the ERSPC and quality-of-life analyses are essential before universal recommendations regarding screening can be made. (Funded by the Netherlands Organization for Health Research and Development and others.) Copyright © 2012 Massachusetts Medical Society.


Schroder F.H.,Erasmus Medical Center | Hugosson J.,Gothenburg University | Roobol M.J.,Erasmus Medical Center | Tammela T.L.J.,University of Tampere | And 30 more authors.
New England Journal of Medicine | Year: 2012

BACKGROUND:Several trials evaluating the effect of prostate-specific antigen (PSA) testing on prostate-cancer mortality have shown conflicting results. We updated prostate-cancer mortality in the European Randomized Study of Screening for Prostate Cancer with 2 additional years of follow-up. METHODS:The study involved 182,160 men between the ages of 50 and 74 years at entry, with a predefined core age group of 162,388 men 55 to 69 years of age. The trial was conducted in eight European countries. Men who were randomly assigned to the screening group were offered PSA-based screening, whereas those in the control group were not offered such screening. The primary outcome was mortality from prostate cancer. RESULTS:After a median follow-up of 11 years in the core age group, the relative reduction in the risk of death from prostate cancer in the screening group was 21% (rate ratio, 0.79; 95% confidence interval [CI], 0.68 to 0.91; P = 0.001), and 29% after adjustment for noncompliance. The absolute reduction in mortality in the screening group was 0.10 deaths per 1000 person-years or 1.07 deaths per 1000 men who underwent randomization. The rate ratio for death from prostate cancer during follow-up years 10 and 11 was 0.62 (95% CI, 0.45 to 0.85; P = 0.003). To prevent one death from prostate cancer at 11 years of follow-up, 1055 men would need to be invited for screening and 37 cancers would need to be detected. There was no significant between-group difference in all-cause mortality. CONCLUSIONS:Analyses after 2 additional years of follow-up consolidated our previous finding that PSA-based screening significantly reduced mortality from prostate cancer but did not affect all-cause mortality. Copyright © 2012 Massachusetts Medical Society.


Heijnsdijk E.A.M.,Erasmus Medical Center | De Carvalho T.M.D.,Erasmus Medical Center | Auvinen A.,University of Tampere | Zappa M.,Institute for Cancer Prevention | And 17 more authors.
Journal of the National Cancer Institute | Year: 2015

Background: The results of the European Randomized Study of Screening for Prostate Cancer (ERSPC) trial showed a statistically significant 29% prostate cancer mortality reduction for the men screened in the intervention arm and a 23% negative impact on the life-years gained because of quality of life. However, alternative prostate-specific antigen (PSA) screening strategies for the population may exist, optimizing the effects on mortality reduction, quality of life, overdiagnosis, and costs. Methods: Based on data of the ERSPC trial, we predicted the numbers of prostate cancers diagnosed, prostate cancer deaths averted, life-years and quality-adjusted life-years (QALY) gained, and cost-effectiveness of 68 screening strategies starting at age 55 years, with a PSA threshold of 3, using microsimulation modeling. The screening strategies varied by age to stop screening and screening interval (one to 14 years or once in a lifetime screens), and therefore number of tests. Results: Screening at short intervals of three years or less was more cost-effective than using longer intervals. Screening at ages 55 to 59 years with two-year intervals had an incremental cost-effectiveness ratio of $73 000 per QALY gained and was considered optimal. With this strategy, lifetime prostate cancer mortality reduction was predicted as 13%, and 33% of the screen-detected cancers were overdiagnosed. When better quality of life for the post-treatment period could be achieved, an older age of 65 to 72 years for ending screening was obtained. Conclusion: Prostate cancer screening can be cost-effective when it is limited to two or three screens between ages 55 to 59 years. Screening above age 63 years is less cost-effective because of loss of QALYs because of overdiagnosis. © The Author 2014. Published by Oxford University Press.


Schroder F.H.,Erasmus Medical Center | Hugosson J.,Gothenburg University | Roobol M.J.,Erasmus Medical Center | Tammela T.L.J.,University of Tampere | And 33 more authors.
The Lancet | Year: 2014

Background The European Randomised study of Screening for Prostate Cancer (ERSPC) has shown significant reductions in prostate cancer mortality after 9 years and 11 years of follow-up, but screening is controversial because of adverse events such as overdiagnosis. We provide updated results of mortality from prostate cancer with follow-up to 2010, with analyses truncated at 9, 11, and 13 years.Methods ERSPC is a multicentre, randomised trial with a predefined centralised database, analysis plan, and core age group (55-69 years), which assesses prostate-specific antigen (PSA) testing in eight European countries. Eligible men aged 50-74 years were identified from population registries and randomly assigned by computer generated random numbers to screening or no intervention (control). Investigators were masked to group allocation. The primary outcome was prostate cancer mortality in the core age group. Analysis was by intention to treat. We did a secondary analysis that corrected for selection bias due to non-participation. Only incidence and no mortality data at 9 years' follow-up are reported for the French centres. This study is registered with Current Controlled Trials, number ISRCTN49127736.Findings With data truncated at 13 years of follow-up, 7408 prostate cancer cases were diagnosed in the intervention group and 6107 cases in the control group. The rate ratio of prostate cancer incidence between the intervention and control groups was 1·91 (95% CI 1·83-1·99) after 9 years (1·64 [1·58-1·69] including France), 1·66 (1·60-1·73) after 11 years, and 1·57 (1·51-1·62) after 13 years. The rate ratio of prostate cancer mortality was 0·85 (0·70-1·03) after 9 years, 0·78 (0·66-0·91) after 11 years, and 0·79 (0·69-0·91) at 13 years. The absolute risk reduction of death from prostate cancer at 13 years was 0·11 per 1000 person-years or 1·28 per 1000 men randomised, which is equivalent to one prostate cancer death averted per 781 (95% CI 490-1929) men invited for screening or one per 27 (17-66) additional prostate cancer detected. After adjustment for non-participation, the rate ratio of prostate cancer mortality in men screened was 0·73 (95% CI 0·61-0·88).Interpretation In this update the ERSPC confirms a substantial reduction in prostate cancer mortality attributable to testing of PSA, with a substantially increased absolute effect at 13 years compared with findings after 9 and 11 years. Despite our findings, further quantification of harms and their reduction are still considered a prerequisite for the introduction of populated-based screening.Funding Each centre had its own funding responsibility. © 2014 Elsevier Ltd.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC1-PM-04-2016 | Award Amount: 7.35M | Year: 2017

Over 130,000 children born in Europe every year will have a congenital anomaly (CA; birth defect). These CAs, which are often rare diseases, are a major cause of infant mortality, childhood morbidity and long-term disability. EUROCAT is an established European network of population-based registries for the epidemiologic surveillance of CAs. EUROlinkCAT will use the EUROCAT infrastructure to support 21 EUROCAT registries in 13 European countries to link their CA data to mortality, hospital discharge, prescription and educational databases. Each registry will send standard aggregate tables and analysis results to a Central Results Repository (CRR) thus respecting data security issues surrounding sensitive data. The CRR will contain standardised summary data and analyses on an estimated 200,000 children with a CA born from 1995 to 2014 up to age 10, enabling hypotheses on their health and education to be investigated at an EU level. This enhanced information will allow optimisation of personalised care and treatment decisions for children with rare CAs. Registries will be supported in using social media platforms to connect with families who live with CAs in their regions. A novel sustainable e-forum, ConnectEpeople, will link these families with local, national and international registries and information resources. ConnectEpeople will involve these families in setting research priorities and ensuring a meaningful dissemination of results. Findings will provide evidence to inform national treatment guidelines, such as concerning screening programs, to optimise diagnosis, prevention and treatment for these children and reduce health inequalities in Europe. An economic evaluation of the hospitalisation costs associated with CA will be provided. The CRR and associated documentation, including linkage and standardisation procedures and ConnectEpeople forum will be available post-EUROlinkCAT thus facilitating future local and EU level analyses.


Zappa M.,ISPO Cancer Research and Prevention Institute | Puliti D.,ISPO Cancer Research and Prevention Institute | Hugosson J.,Sahlgrenska University Hospital | Schroder F.H.,Erasmus University Rotterdam | And 12 more authors.
European Urology | Year: 2014

The advantages and disadvantages of two different methods of analyzing the European Randomized Study of Screening for Prostate Cancer (ERSPC) trial with respect to the effect of prostate-specific antigen (PSA) screening on prostate cancer (PCa) mortality (ie, disease-specific mortality analysis and excess mortality analysis) are discussed in depth. The traditional disease-specific mortality is the best end point, but it could be biased by misclassification of causes of death, and it does not take into account the possible effect of the screening process on other causes of death. Excess mortality analysis overcomes these problems, but the results could be biased if the expected mortality is not corrected for attendance status. Both methods, when applied to the ERSPC trials, demonstrate that no increase in non-PCa mortality occurred in the screening group and confirm that PSA screening decreases PCa mortality. © 2013 European Association of Urology.


Buzzoni C.,ISPO Cancer Research and Prevention Institute | Auvinen A.,University of Tampere | Roobol M.J.,Erasmus Medical Center | Carlsson S.,Gothenburg University | And 19 more authors.
European Urology | Year: 2015

Background The European Randomized Study of Screening for Prostate Cancer (ERSPC) has shown a 21% reduction in prostate cancer (PCa) mortality and a 1.6-fold increase in PCa incidence with prostate-specific antigen (PSA)-based screening (at 13 yr of follow-up). We evaluated PCa incidence by risk category at diagnosis across the study arms to assess the potential impact on PCa mortality. Design, setting, and participants Information on arm, centre, T and M stage, Gleason score, serum PSA at diagnosis, age at randomisation, follow-up time, and vital status were extracted from the ERSPC database. Four risk categories at diagnosis were defined: 1, low; 2, intermediate; 3, high; 4, metastatic disease. PSA (≤100 or >100 ng/ml) was used as the indicator of metastasis. Outcome measurements and statistical analysis Incidence rate ratios (IRRs) for screening versus control arm by risk category at diagnosis and follow-up time were calculated using Poisson regression analysis for seven centres. Follow-up was truncated at 13 yr. Missing data were imputed using chained equations. The analyses were carried out on an intention-to-treat basis. Results and limitations In the screening arm, 7408 PCa cases were diagnosed and 6107 in the control arm. The proportion of missing stage, Gleason score, or PSA value was comparable in the two arms (8% vs 10%), but differed among centres. The IRRs were elevated in the screening arm for the low-risk (IRR: 2.14; 95% CI, 2.03-2.25) and intermediate-risk (IRR: 1.24; 95% CI, 1.16-1.34) categories at diagnosis, equal to unity for the high-risk category at diagnosis (IRR: 1.00; 95% CI, 0.89-1.13), and reduced for metastatic disease at diagnosis (IRR: 0.60; 95% CI, 0.52-0.70). The IRR of metastatic disease had temporal pattern similar to mortality, shifted forwards an average of almost 3 yr, although the mortality reduction was smaller. Conclusions The results confirm a reduction in metastatic disease at diagnosis in the screening arm, preceding mortality reduction by almost 3 yr. Patient summary The findings of this study indicate that the decrease in metastatic disease at diagnosis is the major determinant of the prostate cancer mortality reduction in the European Randomized study of Screening for Prostate Cancer. © 2015 European Association of Urology.


PubMed | University of Tampere, Sloan Kettering Cancer Center, University of Zürich, Clinique BeauSoleil EA and 10 more.
Type: Journal Article | Journal: European urology | Year: 2015

The European Randomized Study of Screening for Prostate Cancer (ERSPC) has shown a 21% reduction in prostate cancer (PCa) mortality and a 1.6-fold increase in PCa incidence with prostate-specific antigen (PSA)-based screening (at 13 yr of follow-up). We evaluated PCa incidence by risk category at diagnosis across the study arms to assess the potential impact on PCa mortality.Information on arm, centre, T and M stage, Gleason score, serum PSA at diagnosis, age at randomisation, follow-up time, and vital status were extracted from the ERSPC database. Four risk categories at diagnosis were defined: 1, low; 2, intermediate; 3, high; 4, metastatic disease. PSA (100 or >100 ng/ml) was used as the indicator of metastasis.Incidence rate ratios (IRRs) for screening versus control arm by risk category at diagnosis and follow-up time were calculated using Poisson regression analysis for seven centres. Follow-up was truncated at 13 yr. Missing data were imputed using chained equations. The analyses were carried out on an intention-to-treat basis.In the screening arm, 7408 PCa cases were diagnosed and 6107 in the control arm. The proportion of missing stage, Gleason score, or PSA value was comparable in the two arms (8% vs 10%), but differed among centres. The IRRs were elevated in the screening arm for the low-risk (IRR: 2.14; 95% CI, 2.03-2.25) and intermediate-risk (IRR: 1.24; 95% CI, 1.16-1.34) categories at diagnosis, equal to unity for the high-risk category at diagnosis (IRR: 1.00; 95% CI, 0.89-1.13), and reduced for metastatic disease at diagnosis (IRR: 0.60; 95% CI, 0.52-0.70). The IRR of metastatic disease had temporal pattern similar to mortality, shifted forwards an average of almost 3 yr, although the mortality reduction was smaller.The results confirm a reduction in metastatic disease at diagnosis in the screening arm, preceding mortality reduction by almost 3 yr.The findings of this study indicate that the decrease in metastatic disease at diagnosis is the major determinant of the prostate cancer mortality reduction in the European Randomized study of Screening for Prostate Cancer.


PubMed | University of Tampere, Sloan Kettering Cancer Center, University of Zürich, University of Helsinki and 8 more.
Type: Journal Article | Journal: Clinical cancer research : an official journal of the American Association for Cancer Research | Year: 2016

The balance of benefits and harms in prostate cancer screening has not been sufficiently characterized. We related indicators of mortality reduction and overdetection by center within the European Randomized Study of Prostate Cancer Screening (ERSPC).We analyzed the absolute mortality reduction expressed as number needed to invite (NNI = 1/absolute risk reduction; indicating how many men had to be randomized to screening arm to avert a prostate cancer death) for screening and the absolute excess of prostate cancer detection as number needed for overdetection (NNO = 1/absolute excess incidence; indicating the number of men invited per additional prostate cancer case), and compared their relationship across the seven ERSPC centers.Both absolute mortality reduction (NNI) and absolute overdetection (NNO) varied widely between the centers: NNI, 200-7,000 and NNO, 16-69. Extent of overdiagnosis and mortality reduction was closely associated [correlation coefficient, r = 0.76; weighted linear regression coefficient, = 33; 95% confidence interval (CI), 5-62; R(2) = 0.72]. For an averted prostate cancer death at 13 years of follow-up, 12 to 36 excess cases had to be detected in various centers.The differences between the ERSPC centers likely reflect variations in prostate cancer incidence and mortality, as well as in screening protocol and performance. The strong interrelation between the benefits and harms suggests that efforts to maximize the mortality effect are bound to increase overdiagnosis and might be improved by focusing on high-risk populations. The optimal balance between screening intensity and risk of overdiagnosis remains unclear.


Dolk H.,University of Ulster | Loane M.,University of Ulster | Teljeur C.,Trinity College Dublin | Densem J.,Biomedical Computing Ltd | And 6 more authors.
European Journal of Epidemiology | Year: 2015

Detection and investigation of congenital anomaly clusters is one part of surveillance to detect new or changing teratogenic exposures in the population. The EUROCAT (European Surveillance of Congenital Anomalies) cluster monitoring system and results are described here. Monitoring was conducted annually from 2007 to 2013 for 18 registries covering an annual birth population up to 0.5 million births. For each registry and 72 anomaly subgroups, the scan “moving window” technique was used to detect clusters in time occurring within the last 2 years based on estimated date of conception. Registries conducted preliminary investigations using a standardised protocol to determine whether there was cause for concern, and expert review was used at key points. 165 clusters were detected, a rate of 3.4 % of all 4823 cluster tests performed over 7 years, more than expected by chance. Preliminary investigations of 126 new clusters confirmed that 35 % were an unusual aggregation of cases, while 56 % were explained by data quality or diagnostic issues, and 9 % were not investigated. For confirmed clusters, the registries’ course of action was continuing monitoring. Three confirmed clusters continued to grow in size for a limited period in subsequent monitoring. This system is best suited to early detection of exposures which are sudden, widespread and/or highly teratogenic, and was reassuring in demonstrating an absence of a sustained exposure of this type. Such proactive monitoring can be run efficiently without overwhelming the surveillance system with false positives, and serves an additional purpose of data quality control. © 2015, The Author(s).

Loading Provinciaal Instituut voor Hygiene collaborators
Loading Provinciaal Instituut voor Hygiene collaborators