Time filter

Source Type

Marchant D.,Providence Heart Lung Institute | Marchant D.,University of British Columbia | Singhera G.K.,Providence Heart Lung Institute | Singhera G.K.,University of British Columbia | And 18 more authors.
Journal of Virology | Year: 2010

Respiratory viruses exert a heavy toll of morbidity and mortality worldwide. Despite this burden there are few specific treatments available for respiratory virus infections. Since many viruses utilize host cell enzymatic machinery such as protein kinases for replication, we determined whether pharmacological inhibition of kinases could, in principle, be used as a broad antiviral strategy for common human respiratory virus infections. A panel of green fluorescent protein (GFP)-expressing recombinant respiratory viruses, including an isolate of H1N1 influenza virus (H1N1/Weiss/43), was used to represent a broad range of virus families responsible for common respiratory infections (Adenoviridae, Paramyxoviridae, Picornaviridae, and Orthomyxoviridae). Kinase inhibitors were screened in a high-throughput assay that detected virus infection in human airway epithelial cells (1HAEo-) using a fluorescent plate reader. Inhibition of p38 mitogen-activated protein kinase (MAPK) signaling was able to significantly inhibit replication by all viruses tested. Therefore, the pathways involved in virus-mediated p38 and extracellular signal-regulated kinase (ERK) MAPK activation were investigated using bronchial epithelial cells and primary fibroblasts derived from MyD88 knockout mouse lungs. Influenza virus, which activated p38 MAPK to approximately 10-fold-greater levels than did respiratory syncytial virus (RSV) in 1HAEo- cells, was internalized about 8-fold faster and more completely than RSV. We show for the first time that p38 MAPK is a determinant of virus infection that is dependent upon MyD88 expression and Toll-like receptor 4 (TLR4) ligation. Imaging of virus-TLR4 interactions showed significant clustering of TLR4 at the site of virus-cell interaction, triggering phosphorylation of downstream targets of p38 MAPK, suggesting the need for a signaling receptor to activate virus internalization. Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Yang M.,Providence Heart Lung Institute | Chu E.M.,Providence Heart Lung Institute | Caslake M.J.,University of Glasgow | Edelstein C.,University of Chicago | And 2 more authors.
Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids | Year: 2010

We investigated whether the presence of endogenous or exogenous lipoprotein-associated phospholipase A2 (Lp-PLA2) can modify the cellular association of oxidized low density lipoprotein (oxLDL) and oxidized lipoprotein(a) (oxLp(a)) by human monocyte-derived macrophages (MDM) and hepatocytes (HepG2). Purified recombinant Lp-PLA2 was used as a source of exogenous enzyme whereas Pefabloc (serine esterase inhibitor) was used to inhibit the endogenous Lp-PLA2 activity associated with isolated lipoproteins. Cellular association studies were performed with DiI-labeled oxLDL or oxLp(a) and human monocyte-derived macrophages and HepG2 cells. Active Lp-PLA2 decreased the cellular association of oxLDL and oxLp(a) in macrophages and HepG2 cells by approximately 30-40%, whereas the inactive enzyme did not significantly change oxidized lipoprotein cellular association by either cell type. OxLDL pretreated by Pefabloc increased oxLDL cellular association by MDM and HepG2 cells compared to untreated oxLDL. Therefore, unlike some lipases, Lp-PLA2 did not appear to have any catalytic independent function in oxLDL cellular association. To assess whether the reduced cellular association mediated by Lp-PLA2 was due to the hydrolysis of oxidized phosphatidylcholine (oxPC), we measured the concentration of lysophosphatidylcholine (lysoPC) in lipoprotein fractions after Lp-PLA2 treatment. LysoPC was increased by 20% (0.4 μM) and 87% (0.7 μM) by active Lp-PLA2 compared to inactive Lp-PLA2 for oxLDL and Lp(a), respectively. LysoPC at higher concentration dose-dependently increased the cellular association of oxLDL and oxLp(a) in MDM and HepG2 cells. We conclude that Lp-PLA2 mediates a decrease in oxidized lipoprotein cellular association in human macrophages and HepG2 cells by reducing the concentration of oxPC within these lipoproteins. © 2009 Elsevier B.V. All rights reserved.

Loading Providence Heart Lung Institute collaborators
Loading Providence Heart Lung Institute collaborators