Protobios LLC

Tallinn, Estonia

Protobios LLC

Tallinn, Estonia
SEARCH FILTERS
Time filter
Source Type

Jaager K.,Tallinn University of Technology | Jaager K.,Cellin Technologies LLC | Islam S.,Karolinska Institutet | Zajac P.,Karolinska Institutet | And 3 more authors.
PLoS ONE | Year: 2012

Background: Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs) that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition. Methodology/Principal Findings: Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs (AdMSCs) and dermal fibroblasts (FBs) along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched AdMSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both AdMSCs and FBs. Further, AdMSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation. Conclusions/Significance: Our findings suggest that stromal stem cells including AdMSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between AdMSCs and FBs. © 2012 Jääger et al.


Jaager K.,Tallinn University of Technology | Jaager K.,Cellin Technologies LLC | Fatkina A.,Cellin Technologies LLC | Velts A.,Cellin Technologies LLC | And 3 more authors.
Gene | Year: 2014

Mesenchymal stem cells (MSCs) possess a multi-lineage differentiation capacity that makes them important players in the field of regenerative medicine. MSC populations derived from different tissues or donors have been shown to exhibit variable gene expression patterns. Further, it is widely acknowledged that MSC isolates are heterogeneous mixtures of cells at different developmental stages. However, the heterogeneity of expression of lineage regulators has not been linked to differentiation potential of different MSC populations towards mesenchymal lineages. Here, we analyzed variation of expression of differentiation markers across whole population and between single differentiating cells of multipotent stromal cell populations derived from adipose tissue (AdMSCs) and skin (FBs) of seven donors. The results of the analyses show that all cell populations exhibit similar differentiation potential towards adipocyte, osteoblast and chondrocyte lineages despite tissue type- and donor-specific variations of expression of differentiation-associated genes. Further, we detected variable expression of lineage regulators in individual differentiating cells. Together, our data indicate that single cells of stromal cell populations could use distinct molecular mechanisms to reach a common cell fate. © 2013 Elsevier B.V.


Piirsoo A.,Protobios LLC | Piirsoo A.,Cellin Technologies LLC | Kasak L.,Protobios LLC | Kasak L.,Tallinn University of Technology | And 6 more authors.
Biochimica et Biophysica Acta - Molecular Cell Research | Year: 2014

Observations that Glioma-associated transcription factors Gli1 and Gli2 (Gli1/2), executers of the Sonic Hedgehog (Shh) signaling pathway and targets of the Transforming Growth Factor β (TGF-β) signaling axis, are involved in numerous developmental and pathological processes unveil them as attractive pharmaceutical targets. Unc-51-like serine/threonine kinase Ulk3 has been suggested to play kinase activity dependent and independent roles in the control of Gli proteins in the context of the Shh signaling pathway. This study aimed at investigating whether the mechanism of generation of Gli1/2 transcriptional activators has similarities regardless of the signaling cascade evoking their activation. We also elucidate further the role of Ulk3 kinase in regulation of Gli1/2 proteins and examine SU6668 as an inhibitor of Ulk3 catalytic activity and a compound targeting Gli1/2 proteins in different cell-based experimental models. Here we demonstrate that Ulk3 is required not only for maintenance of basal levels of Gli1/2 proteins but also for TGF-β or Shh dependent activation of endogenous Gli1/2 proteins in human adipose tissue derived multipotent stromal cells (ASCs) and mouse immortalized progenitor cells, respectively. We show that cultured ASCs possess the functional Shh signaling axis and differentiate towards osteoblasts in response to Shh. Also, we demonstrate that similarly to Ulk3 RNAi, SU6668 prevents de novo expression of Gli1/2 proteins and antagonizes the Gli-dependent activation of the gene expression programs induced by either Shh or TGF-β. Our data suggest SU6668 as an efficient inhibitor of Ulk3 kinase allowing manipulation of the Gli-dependent transcriptional outcome. © 2014 The Authors.


Tints K.,Protobios LLC | Prink M.,Protobios LLC | Prink M.,Competence Center for Cancer Research | Neuman T.,Protobios LLC | And 2 more authors.
International Journal of Molecular Sciences | Year: 2014

Degenerate expression of transcription coregulator proteins is observed in most human cancers. Therefore, in targeted anti-cancer therapy development, intervention at the level of cancer-specific transcription is of high interest. The steroid receptor coactivator-1 (SRC-1) is highly expressed in breast, endometrial, and prostate cancer. It is present in various transcription complexes, including those containing nuclear hormone receptors. We examined the effects of a peptide that contains the LXXLL-motif of the human SRC-1 nuclear receptor box 1 linked to the cell-penetrating transportan 10 (TP10), hereafter referred to as TP10-SRC1LXXLL, on proliferation and estrogen-mediated transcription of breast cancer cells in vitro. Our data show that TP10-SRC1LXXLL induced dose-dependent cell death of breast cancer cells, and that this effect was not affected by estrogen receptor (ER) status. Surprisingly TP10-SRC1LXXLL severely reduced the viability and proliferation of hormone-unresponsive breast cancer MDA-MB-231 cells. In addition, the regulation of the endogenous ERα direct target gene pS2 was not affected by TP10-SRC1LXXLL in estrogen-stimulated MCF-7 cells. Dermal fibroblasts were similarly affected by treatment with higher concentrations of TP10-SRC1LXXLL and this effect was significantly delayed. These results suggest that the TP10-SRC1LXXLL peptide may be an effective drug candidate in the treatment of cancers with minimal therapeutic options, for example ER-negative tumors. © 2014 by the authors; licensee MDPI, Basel, Switzerland.


Kazantseva J.,Protobios LLC | Kivil A.,Protobios LLC | Kivil A.,Tallinn University of Technology | Tints K.,Protobios LLC | And 5 more authors.
PLoS ONE | Year: 2013

Transcription factor IID (TFIID) activity can be regulated by cellular signals to specifically alter transcription of particular subsets of genes. Alternative splicing of TFIID subunits is often the result of external stimulation of upstream signaling pathways. We studied tissue distribution and cellular expression of different splice variants of TFIID subunit TAF4 mRNA and biochemical properties of its isoforms in human mesenchymal stem cells (hMSCs) to reveal the role of different isoforms of TAF4 in the regulation of proliferation and differentiation. Expression of TAF4 transcripts with exons VI or VII deleted, which results in a structurally modified hTAF4-TAFH domain, increases during early differentiation of hMSCs into osteoblasts, adipocytes and chondrocytes. Functional analysis data reveals that TAF4 isoforms with the deleted hTAF4-TAFH domain repress proliferation of hMSCs and preferentially promote chondrogenic differentiation at the expense of other developmental pathways. This study also provides initial data showing possible cross-talks between TAF4 and TP53 activity and switching between canonical and non-canonical WNT signaling in the processes of proliferation and differentiation of hMSCs. We propose that TAF4 isoforms generated by the alternative splicing participate in the conversion of the cellular transcriptional programs from the maintenance of stem cell state to differentiation, particularly differentiation along the chondrogenic pathway. © 2013 Kazantseva et al.


PubMed | Tallinn University of Technology and Protobios Llc
Type: Journal Article | Journal: Biochimica et biophysica acta | Year: 2015

High activity of GLI family zinc finger protein 2 (GLI2) promotes tumor progression. Removal of the repressor domain at the N terminus (GLI2N) by recombinant methods converts GLI2 into a powerful transcriptional activator. However, molecular mechanisms leading to the formation of GLI2N activator proteins have not been established. Herein we report for the first time that the functional activities of GLI2 are parted into different protein isoforms by alternative promoter usage, selection of alternative splicing, transcription initiation and termination sites. Functional studies using melanoma cells revealed that transcriptional regulation of GLI2 is TGFbeta-dependent and supports the predominant production of GLI2N and C-terminally truncated GLI2 (GLI2C) isoforms in cells with high migratory and invasive phenotype. Taken together, these results highlight the role of transcription and RNA processing as major processes in the regulation of GLI2 activity with severe impacts in cancer development.


Kazantseva J.,Protobios LLC | Tints K.,Protobios LLC | Neuman T.,Protobios LLC | Palm K.,Protobios LLC
Journal of molecular neuroscience : MN | Year: 2015

Expression of general transcription factor and co-activator TAF4 varies during development and in the processes of cell differentiation with suggested connection to neurodegenerative diseases. Here, we show that expression of TAF4 alternative splice variants is different in various regions of the human brain, substantiating the role of alternative splicing of TAF4 in the regulation of neural development and brain function. Most of the described splicing events affect the TAFH homology domain of TAF4 (hTAF4-TAFH). Besides, differentiated towards neural lineages, normal human neural progenitors (NHNPs) lose canonical full-length TAF4 isoform. To study the effects of hTAF4-TAFH splicing on neuronal differentiation, we used RNAi approach to target hTAF4-TAFH-encoding domain in NHNPs. Results show that inactivation of hTAF4-TAFH domain accelerates differentiation of human neural progenitor cells. Conversely, enhanced expression of TAF4 suppresses differentiation and keeps neural progenitor cells in a stem cell-like state. Finally, we provide data on the involvement of TP53 and noncanonical WNT signaling pathways in mediating effects of TAF4 on neuronal differentiation. Overall, our data suggest that specific isoforms of TAF4 may selectively and efficiently control neurogenesis.


Methods of stimulating multipotency, proliferation and differentiation of isolated mesenchymal stem cells (MSCs), which permit more effective differentiation and integration of such cells into host tissues. The method includes providing an in vitro cell population of MSCs and administering CCL5 chemokine. Preferably CCL is administered in an amount sufficient to induce expression of one or more multipotency related genes selected from the group consisting of OCT3/4, NANOG, SOX 2, KLF4, and SOX9.


PubMed | Protobios LLC
Type: Journal Article | Journal: Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine | Year: 2015

Changes in alternative splicing have been linked to cancer development. We hypothesized that changes occurring in tumor tissue can also be detected in the peripheral blood of cancer patients leading to discovery of blood biomarkers of breast cancer. Alternative splicing profiles of 94 genes were examined in cancerous breast tissue. Discriminating splice variants were analyzed in the peripheral blood of early stage (BCI/II) (stage I-II; n=26), neoadjuvant receiving locally advanced breast cancer patients (LABC) (stage IIb-IIIa, b; n=10) and healthy volunteers (n=26) using qRT-PCR analysis. Changes in marker expression during neoadjuvant therapy were analyzed at 15 timepoints. High expression of REST-N50, the alternatively spliced variant of REST, was detected in the blood of LABC patients but not in BCI/II and healthy controls (p=0.0032 and p=0.0029, respectively). Expression levels of DOPEY1v2, the alternative splice variant of DOPEY1, in the blood could differentiate cancer from healthy controls (p=0.024) and discriminate between patient groups (BCI/II vs LABC, p=0.002). Positive response to neoadjuvant therapy of REST-N50-positive LABC patients correlated with a decrease in REST-N50 levels (p<0.0001). Assessment of REST-N50 and DOPEY1v2 may prove useful in diagnostic blood tests of breast cancer. REST-N50 shows a high potential as a blood biomarker for evaluating the effectiveness of therapy in the neoadjuvant setting.


PubMed | Protobios LLC
Type: | Journal: Scientific reports | Year: 2016

Reprogramming of somatic cells has become a versatile tool for biomedical research and for regenerative medicine. In the current study, we show that manipulating alternative splicing (AS) is a highly potent strategy to produce cells for therapeutic applications. We demonstrate that silencing of hTAF4-TAFH activity of TAF4 converts human facial dermal fibroblasts to melanocyte-like (iMel) cells. iMel cells produce melanin and express microphthalmia-associated transcription factor (MITF) and its target genes at levels comparable to normal melanocytes. Reprogramming of melanoma cells by manipulation with hTAF4-TAFH activity upon TAFH RNAi enforces cell differentiation towards chondrogenic pathway, whereas ectoptic expression of TAF4 results in enhanced multipotency and neural crest-like features in melanoma cells. In both cell states, iMels and cancer cells, hTAF4-TAFH activity controls migration by supporting E- to N-cadherin switches. From our data, we conclude that targeted splicing of hTAF4-TAFH coordinates AS of other TFIID subunits, underscoring the role of TAF4 in synchronised changes of Pol II complex composition essential for efficient cellular reprogramming. Taken together, targeted AS of TAF4 provides a unique strategy for generation of iMels and recapitulating stages of melanoma progression.

Loading Protobios LLC collaborators
Loading Protobios LLC collaborators