Time filter

Source Type

Derio, Spain

Lavoie C.,Universite de Sherbrooke | Roy L.,Proteomics Platform | Lanoix J.,Caprion Proteomics Inc. | Taheri M.,University of Montreal | And 5 more authors.
Progress in Histochemistry and Cytochemistry | Year: 2011

The endoplasmic reticulum (ER) is a highly dynamic organelle. It is composed of four subcompartments including nuclear envelope (NE), rough ER (rER), smooth ER (sER) and transitional ER (tER). The subcompartments are interconnected, can fragment and dissociate and are able to reassemble again. They coordinate with cell function by way of protein regulators in the surrounding cytosol. The activity of the many associated molecular machines of the ER as well as the fluid nature of the limiting membrane of the ER contribute extensively to the dynamics of the ER. This review examines the properties of the ER that permit its isolation and purification and the physiological conditions that permit reconstitution both in vitro and in vivo in normal and in disease conditions. © 2011 Elsevier GmbH. Source

Siano A.,CONICET | Humpola M.V.,CONICET | De Oliveira E.,Proteomics Platform | Albericio F.,Barcelona Institute for Research in Biomedicine | And 4 more authors.
Journal of Natural Products | Year: 2014

The skin of many amphibians produces a large repertoire of antimicrobial peptides that are crucial in the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, knowledge about peptides with antimicrobial properties is limited to a few species. Here we used LC-MS-MS to analyze samples of Hypsiboas pulchellus skin with the aim to identify antimicrobial peptides in the mass range of 1000 to 2000 Da. Twenty-three novel sequences were identified by MS, three of which were selected for chemical synthesis and further studies. The three synthetic peptides, named P1-Hp-1971, P2-Hp-1935, and P3-Hp-1891, inhibited the growth of two ATCC strains: Escherichia coli (MIC: 16, 33, and 17 μM, respectively) and Staphylococcus aureus (MIC: 8, 66, and 17 μM, respectively). P1-Hp-1971 and P3-Hp-1891 were the most active peptides. P1-Hp-1971, which showed the highest therapeutic indices (40 for E. coli and 80 for S. aureus), is a proline-glycine-rich peptide with a highly unordered structure, while P3-Hp-1891 adopts an amphipathic α-helical structure in the presence of 2,2,2-trifluoroethanol and anionic liposomes. This is the first peptidomic study of Hypsiboas pulchellus skin secretions to allow the identification of antimicrobial peptides. © 2014 The American Chemical Society and American Society of Pharmacognosy. Source

Martinez-Bartolome S.,CSIC - National Center for Biotechnology | Deutsch E.W.,Institute for Systems Biology | Binz P.-A.,Swiss Institute of Bioinformatics | Jones A.R.,University of Liverpool | And 17 more authors.
Journal of Proteomics | Year: 2013

Mass spectrometry is already a well-established protein identification tool and recent methodological and technological developments have also made possible the extraction of quantitative data of protein abundance in large-scale studies. Several strategies for absolute and relative quantitative proteomics and the statistical assessment of quantifications are possible, each having specific measurements and therefore, different data analysis workflows.The guidelines for Mass Spectrometry Quantification allow the description of a wide range of quantitative approaches, including labeled and label-free techniques and also targeted approaches such as Selected Reaction Monitoring (SRM). Biological significance: The HUPO Proteomics Standards Initiative (HUPO-PSI) has invested considerable efforts to improve the standardization of proteomics data handling, representation and sharing through the development of data standards, reporting guidelines, controlled vocabularies and tooling. In this manuscript, we describe a key output from the HUPO-PSI-namely the MIAPE Quant guidelines, which have developed in parallel with the corresponding data exchange format mzQuantML [1]. The MIAPE Quant guidelines describe the HUPO-PSI proposal concerning the minimum information to be reported when a quantitative data set, derived from mass spectrometry (MS), is submitted to a database or as supplementary information to a journal. The guidelines have been developed with input from a broad spectrum of stakeholders in the proteomics field to represent a true consensus view of the most important data types and metadata, required for a quantitative experiment to be analyzed critically or a data analysis pipeline to be reproduced. It is anticipated that they will influence or be directly adopted as part of journal guidelines for publication and by public proteomics databases and thus may have an impact on proteomics laboratories across the world. This article is part of a Special Issue entitled: Standardization and Quality Control. © 2013 Elsevier B.V. Source

Dore J.,CNRS Microbial Ecology | Perraud M.,CNRS Microbial Ecology | Dieryckx C.,Proteomics Platform | Kohler A.,University of Lorraine | And 10 more authors.
New Phytologist | Year: 2015

Extracellular proteins play crucial roles in the interaction between mycorrhizal fungi and their environment. Computational prediction and experimental detection allowed identification of 869 proteins constituting the exoproteome of Hebeloma cylindrosporum. Small secreted proteins (SSPs) and carbohydrate-active enzymes (CAZymes) were the two major classes of extracellular proteins. Twenty-eight per cent of the SSPs were secreted by free-living mycelia and five of the 10 most abundant extracellular proteins were SSPs. By contrast, 63-75% of enzymes involved in nutrient acquisition were secreted. A total of 150 extracellular protein-coding genes were differentially expressed between mycorrhizas and free-living mycelia. SSPs were the most affected. External environmental conditions also affected expression of 199 exoproteome genes in mycorrhizas. SSPs displayed different patterns of regulation in response to presence of a host plant or other environmental signals. Several of the genes most overexpressed in the presence of organic matter encoded oxidoreductases. Hebeloma cylindrosporum has not fully lost its ancestral saprotrophic capacities but rather adapted them not to harm its hosts and to use soil organic nitrogen. The complex and divergent patterns of regulation of SSPs in response to a symbiotic partner and/or organic matter suggest various roles in the biology of mycorrhizal fungi. © 2015 New Phytologist Trust. Source

Lopitz-Otsoa F.,Proteomics Unit | Rodriguez-Suarez E.,Proteomics Platform | Aillet F.,Proteomics Unit | Casado-Vela J.,Proteomics Platform | And 5 more authors.
Journal of Proteomics | Year: 2012

The successful use of proteasome inhibitors in clinical trials revealed the potential of the Ubiquitin Proteasome System for drug development. Protein remodeling through ubiquitylation is known to regulate the stability and activity of essential cellular factors through largely uncharacterized mechanisms. Here, we used Tandem repeated Ubiquitin Binding Entities (TUBEs) under non-denaturing conditions followed by mass spectrometry analysis to study global ubiquitylation events that may lead to the identification of potential drug targets. Using this approach we identified 643 proteins including known and unknown ubiquitin targets from human breast adenocarcinoma MCF7 cells treated with Adriamycin. Coherent with a global cellular response to this genotoxic insult, cellular factors identified are involved in protein synthesis, cellular transport, RNA post-transcriptional modification and signaling pathways regulating early stress responses. This includes components of large macromolecular complexes such as subunits and regulators of the proteasome, supporting the use of this method to characterize networks of molecular interactions coordinated by ubiquitylation. Further in vitro and in silico analysis confirmed that 84% of the total proteins identified here, are ubiquitylated. More importantly the enrichment of known biomarkers and targets for drug development, underlined the potential of this approach for the identification of this clinically relevant information. This article is part of a Special Issue entitled: Proteomics: The clinical link. © 2011 Elsevier B.V.. Source

Discover hidden collaborations