Entity

Time filter

Source Type

Perth, Australia

Lui J.K.C.,University of Western Australia | Lipscombe R.,Proteomics International | Arthur P.G.,University of Western Australia
Journal of Proteome Research | Year: 2010

Cells are routinely exposed to hyperoxic conditions when cultured in the presence of 95% air and 5% carbon dioxide. Hyperoxic conditions can increase the generation of reactive oxygen species and cause oxidative stress. Oxidative stress has been proposed to cause cells in culture to behave differently from cells in vivo. One route by which oxidative stress could affect cellular function is through alterations in protein function caused by the oxidation of thiol groups (-SH) of redox-sensitive cysteine residues. To test whether changes in oxygen concentration were sufficient to cause changes in the thiol redox state of proteins, we developed a sensitive method involving the labeling of reduced and oxidized cysteine residues with fluorescent tags. Using this dual labeling method, we found 62 of 411 protein spots that were significantly more reduced following a 30 min decrease in oxygen concentration. We conclude that the elevated oxygen concentration characteristic of typical cell culture conditions has the potential to affect cellular behavior through changes in the thiol redox state of proteins. © 2010 American Chemical Society. Source


Vincent D.,Australian National University | Du Fall L.A.,Australian National University | Livk A.,Proteomics International | Mathesius U.,Australian National University | And 4 more authors.
Molecular Plant Pathology | Year: 2012

In this study, proteomics and metabolomics were used to study the wheat response to exposure to the SnToxA effector protein secreted by the fungal pathogen Stagonospora nodorum during infection. Ninety-one different acidic and basic proteins and 101 metabolites were differentially abundant when comparing SnToxA- and control-treated wheat leaves during a 72-h time course. Proteins involved in photosynthesis were observed to increase marginally initially after exposure, before decreasing rapidly and significantly. Proteins and metabolites associated with the detoxification of reactive oxygen species in the chloroplast were also differentially abundant during SnToxA exposure, implying that the disruption of photosynthesis causes the rapid accumulation of chloroplastic reactive oxygen species. Metabolite profiling revealed major metabolic perturbations in central carbon metabolism, evidenced by significant increases in tricarboxylic acid (TCA) cycle intermediates, suggestive of an attempt by the plant to generate ATP and reducing equivalents in response to the collapse of photosynthesis caused by SnToxA. This was supported by the observation that the TCA cycle enzyme malate dehydrogenase was up-regulated in response to SnToxA. The infiltration of SnToxA also resulted in a significant increase in abundance of many pathogenicity-related proteins, even in the absence of the pathogen or other pathogen-associated molecular patterns. This approach highlights the complementary nature of proteomics and metabolomics in studying effector-host interactions, and provides further support for the hypothesis that necrotrophic pathogens, such as S.nodorum, appear to exploit existing host cell death mechanisms to promote pathogen growth and cause disease. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd. Source


Casey T.,Proteomics International | Casey T.,Center for Food and Genomic Medicine | Solomon P.S.,Australian National University | Bringans S.,Proteomics International | And 4 more authors.
Proteomics | Year: 2010

The G protein α-subunit (Gna1) in the wheat pathogen Stagonospora nodorum has previously been shown to be a critical controlling element in disease ontogeny. In this study, iTRAQ and 2-D LC MALDI-MS/MS have been used to characterise protein expression changes in the S. nodorum gna1 strain versus the SN15 wild-type. A total of 1336 proteins were identified. The abundance of 49 proteins was significantly altered in the gna1 strain compared with the wildtype. Gna1 was identified as having a significant regulatory role on primary metabolic pathways, particularly those concerned with NADPH synthesis or consumption. Mannitol dehydrogenase was up-regulated in the gna1 strain while mannitol 1-phosphate dehydrogenase was down-regulated providing direct evidence of Gna1 regulation over this enigmatic pathway. Enzymatic analysis and growth assays confirmed this regulatory role. Several novel hypothetical proteins previously associated with stress and pathogen responses were identified as positively regulated by Gna1. A short-chain dehydrogenase (Sch3) was also significantly less abundant in the gna1 strains. Sch3 was further characterised by gene disruption in S. nodorum by homologous recombination. Functional characterisation of the sch3 strains revealed their inability to sporulate in planta providing a further link to Gna1 signalling and asexual reproduction. These data add significantly to the identification of the regulatory targets of Gna1 signalling in S. nodorum and have demonstrated the utility of iTRAQ in dissecting signal transduction pathways. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA. Source


Molinari C.E.,University of Western Australia | Casadio Y.S.,University of Western Australia | Hartmann B.T.,Perron Rotary Express Milk Bank PREM Bank Neonatal Paediatrics | Livk A.,Proteomics International | And 3 more authors.
Journal of Proteome Research | Year: 2012

The abundant proteins in human milk have been well characterized and are known to provide nutritional, protective, and developmental advantages to both term and preterm infants. However, relatively little is known about the expression of the low abundance proteins that are present in human milk because of the technical difficulties associated with their detection. We used a combination of electrophoretic techniques, ProteoMiner treatment, and two-dimensional liquid chromatography to examine the proteome of human skim milk expressed between 7 and 28 days postpartum by healthy term mothers and identified 415 in a pooled milk sample. Of these, 261 were found in human skim milk for the first time, greatly expanding our understanding of the human skim milk proteome. The majority of the proteins identified were involved in either the immune response (24%) or in cellular (28%) or protein (16%) metabolism. We also used iTRAQ analysis to examine the effects of premature delivery on milk protein composition. Differences in protein expression between pooled milk from mothers delivering at term (38-41 weeks gestation) and preterm (28-32 weeks gestation) were investigated, with 55 proteins found to be differentially expressed with at least 90% confidence. Twenty-eight proteins were present at higher levels in preterm milk, and 27 were present at higher levels in term milk. © 2012 American Chemical Society. Source

Discover hidden collaborations