Time filter

Source Type

Boston, MA, United States

Tang S.,University of Florida | Tang S.,Harvard University | Tang S.,Proteomics Center | Riva A.,University of Florida
BMC Bioinformatics | Year: 2013

Background: Next generation transcriptome sequencing (RNA-Seq) is emerging as a powerful experimental tool for the study of alternative splicing and its regulation, but requires ad-hoc analysis methods and tools. PASTA (Patterned Alignments for Splicing and Transcriptome Analysis) is a splice junction detection algorithm specifically designed for RNA-Seq data, relying on a highly accurate alignment strategy and on a combination of heuristic and statistical methods to identify exon-intron junctions with high accuracy.Results: Comparisons against TopHat and other splice junction prediction software on real and simulated datasets show that PASTA exhibits high specificity and sensitivity, especially at lower coverage levels. Moreover, PASTA is highly configurable and flexible, and can therefore be applied in a wide range of analysis scenarios: it is able to handle both single-end and paired-end reads, it does not rely on the presence of canonical splicing signals, and it uses organism-specific regression models to accurately identify junctions.Conclusions: PASTA is a highly efficient and sensitive tool to identify splicing junctions from RNA-Seq data. Compared to similar programs, it has the ability to identify a higher number of real splicing junctions, and provides highly annotated output files containing detailed information about their location and characteristics. Accurate junction data in turn facilitates the reconstruction of the splicing isoforms and the analysis of their expression levels, which will be performed by the remaining modules of the PASTA pipeline, still under development. Use of PASTA can therefore enable the large-scale investigation of transcription and alternative splicing. © 2013 Tang and Riva; licensee BioMed Central Ltd.

Ikeuchi Y.,University of Washington | Ikeuchi Y.,Harvard University | delaTorre-Ubieta L.,Harvard University | Matsuda T.,Harvard University | And 5 more authors.
Cell Reports | Year: 2013

Intellectual disability (ID) is a prevalent developmental disorder of cognition that remains incurable. Here, we report that knockdown of the X-linked ID(XLID) protein polyglutamine-binding protein 1 (PQBP1) in neurons profoundly impairs the morphogenesis of the primary cilium, including in the mouse cerebral cortex invivo. PQBP1 is localized at the base of the neuronal cilium, and targeting its WW effector domain to the cilium stimulates ciliary morphogenesis. We also find that PQBP1 interacts with Dynamin 2 and thereby inhibits its GTPase activity. Accordingly, Dynamin 2 knockdown in neurons stimulates ciliogenesis and suppresses the PQBP1 knockdown-induced ciliary phenotype. Strikingly, a mutation of the PQBP1 WW domain that causes XLID disrupts its ability to interact with and inhibit Dynamin 2 and to induce neuronal ciliogenesis. These findings define PQBP1 and Dynamin 2 as components of a signaling pathway that orchestrates neuronal ciliary morphogenesis in the brain

Wilhelm M.,Proteomics Center
Molecular & cellular proteomics : MCP | Year: 2012

Across a host of MS-driven-omics fields, researchers witness the acquisition of ever increasing amounts of high throughput MS data and face the need for their compact yet efficiently accessible storage. Addressing the need for an open data exchange format, the Proteomics Standards Initiative and the Seattle Proteome Center at the Institute for Systems Biology independently developed the mzData and mzXML formats, respectively. In a subsequent joint effort, they defined an ontology and associated controlled vocabulary that specifies the contents of MS data files, implemented as the newer mzML format. All three formats are based on XML and are thus not particularly efficient in either storage space requirements or read/write speed. This contribution introduces mz5, a complete reimplementation of the mzML ontology that is based on the efficient, industrial strength storage backend HDF5. Compared with the current mzML standard, this strategy yields an average file size reduction to ∼54% and increases linear read and write speeds ∼3-4-fold. The format is implemented as part of the ProteoWizard project and is available under a permissive Apache license. Additional information and download links are available from http://software.steenlab.org/mz5.

McDowell G.S.,University of Cambridge | McDowell G.S.,Proteomics Center | McDowell G.S.,Harvard University | Philpott A.,University of Cambridge
International Journal of Biochemistry and Cell Biology | Year: 2013

Post-translational protein modifications initiate, regulate, propagate and terminate a wide variety of processes in cells, and in particular, ubiquitylation targets substrate proteins for degradation, subcellular translocation, cell signaling and multiple other cellular events. Modification of substrate proteins is widely observed to occur via covalent linkages of ubiquitin to the amine groups of lysine side-chains. However, in recent years several new modes of ubiquitin chain attachment have emerged. For instance, covalent modification of non-lysine sites in substrate proteins is theoretically possible according to basic chemical principles underlying the ubiquitylation process, and evidence is building that sites such as the N-terminal amine group of a protein, the hydroxyl group of serine and threonine residues and even the thiol groups of cysteine residues are all employed as sites of ubiquitylation. However, the potential importance of this "non-canonical ubiquitylation" of substrate proteins on sites other than lysine residues has been largely overlooked. This review aims to highlight the unusual features of the process of non-canonical ubiquitylation and the consequences of these events on the activity and fate of a protein. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Zhang X.,rby Neurobiology Center | Abreu J.G.,rby Neurobiology Center | Abreu J.G.,Federal University of Rio de Janeiro | Yokota C.,rby Neurobiology Center | And 10 more authors.
Cell | Year: 2012

Secreted Wnt morphogens are signaling molecules essential for embryogenesis, pathogenesis, and regeneration and require distinct modifications for secretion, gradient formation, and activity. Whether Wnt proteins can be posttranslationally inactivated during development and homeostasis is unknown. Here we identify, through functional cDNA screening, a transmembrane protein Tiki1 that is expressed specifically in the dorsal Spemann-Mangold Organizer and is required for anterior development during Xenopus embryogenesis. Tiki1 antagonizes Wnt function in embryos and human cells via a TIKI homology domain that is conserved from bacteria to mammals and acts likely as a protease to cleave eight amino-terminal residues of a Wnt protein, resulting in oxidized Wnt oligomers that exhibit normal secretion but minimized receptor-binding capability. Our findings identify a Wnt-specific protease that controls head formation, reveal a mechanism for morphogen inactivation through proteolysis-induced oxidation-oligomerization, and suggest a role of the Wnt amino terminus in evasion of oxidizing inactivation. TIKI proteins may represent potential therapeutic targets. © 2012 Elsevier Inc.

Discover hidden collaborations