Protein Chemistry Unit

Milano, Italy

Protein Chemistry Unit

Milano, Italy
SEARCH FILTERS
Time filter
Source Type

Migliori V.,Institute of Molecular and Cell Biology | Migliori V.,National University of Singapore | Muller J.,Institute of Molecular and Cell Biology | Phalke S.,Institute of Molecular and Cell Biology | And 19 more authors.
Nature Structural and Molecular Biology | Year: 2012

The asymmetric dimethylation of histone H3 arginine 2 (H3R2me2a) acts as a repressive mark that antagonizes trimethylation of H3 lysine 4. Here we report that H3R2 is also symmetrically dimethylated (H3R2me2s) by PRMT5 and PRMT7 and present in euchromatic regions. Profiling of H3-tail interactors by SILAC MS revealed that H3R2me2s excludes binding of RBBP7, a central component of co-repressor complexes Sin3a, NURD and PRC2. Conversely H3R2me2s enhances binding of WDR5, a common component of the coactivator complexes MLL, SET1A, SET1B, NLS1 and ATAC. The interaction of histone H3 with WDR5 distinguishes H3R2me2s from H3R2me2a, which impedes the recruitment of WDR5 to chromatin. The crystallographic structure of WDR5 and the H3R2me2s peptide elucidates the molecular determinants of this high affinity interaction. Our findings identify H3R2me2s as a previously unknown mark that keeps genes poised in euchromatin for transcriptional activation upon cell-cycle withdrawal and differentiation in human cells. © 2012 Nature America, Inc. All rights reserved.


Miluzio A.,San Raffaele Scientific Institute | Beugnet A.,San Raffaele Scientific Institute | Grosso S.,San Raffaele Scientific Institute | Grosso S.,University of Piemonte Orientale | And 9 more authors.
Cancer Cell | Year: 2011

Eukaryotic Initiation Factor 6 (eIF6) controls translation by regulating 80S subunit formation. eIF6 is overexpressed in tumors. Here, we demonstrate that eIF6 inactivation delays tumorigenesis and reduces tumor growth in vivo. eIF6+/- mice resist to Myc-induced lymphomagenesis and have prolonged tumor-free survival and reduced tumor growth. eIF6+/- mice are also protected by p53 loss. Myc-driven lymphomas contain PKCβII and phosphorylated eIF6; eIF6 is phosphorylated by tumor-derived PKCβII, but not by the eIF4F activator mTORC1. Mutation of PKCβII phosphosite of eIF6 reduces tumor growth. Thus, eIF6 is a rate-limiting controller of initiation of translation, able to affect tumorigenesis and tumor growth. Modulation of eIF6 activity, independent from eIF4F complex, may lead to a therapeutical avenue in tumor therapy. © 2011 Elsevier Inc.


Zerefos P.G.,Foundation for Biomedical Research of the Academy | Aivaliotis M.,Foundation for Biomedical Research of the Academy | Aivaliotis M.,Institute of Molecular Biology and Biotechnology | Baumann M.,Protein Chemistry Unit | Vlahou A.,Foundation for Biomedical Research of the Academy
Proteomics | Year: 2012

Urine is a biological fluid that is non-invasively and easily harvested, and exhibits high stability from the proteomics point of view. At the downside, the overall low protein content of urine as well as the presence of low- and high-abundance proteins underscores the need for protein enrichment. As a continuation of previous efforts towards the comprehensive characterization of the urine proteome, the current study targeted the mining of urine proteins through the combined application of different protein separation methodologies, specifically, liquid chromatography and preparative electrophoresis along with 1D gel electrophoresis and protein identification by mass spectrometry. In order to enhance comparison and integration of different experimental data sets, the "standard" urine sample developed within the European Kidney and Urine Proteomics (EuroKUP) COST Action, was employed. As a contribution to the existing knowledge, we focused on maintaining and providing information about experimental mass of the identified proteins as well as information pertaining to their relative abundance - as allowed by technical limitations - thus providing an initial view of different isoforms representation and facilitating their future characterization. The difficulties in comparing proteome mining data sets become once more evident, underscoring the need for adopting standardized ways for data reporting as well as for potential new approaches for data analysis involving a thorough investigation of received information at the peptide level. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Bossi S.,Protein Chemistry Unit | Ferranti B.,Protein Chemistry Unit | Martinelli C.,SEMM IFOM IEO Campus for Oncogenomics | Capasso P.,Protein Chemistry Unit | de Marco A.,Protein Chemistry Unit
Protein Expression and Purification | Year: 2010

Immunoaffinity is an established chromatographic method for isolating macromolecules independently on the presence of specific tags while the tight interaction between antigen and antibody has been exploited to stabilize proteins during crystallization trials. Therefore, it seems reasonable to try to combine the two protocols, namely to co-express the target proteins together with their specific antibodies to obtain stable complexes suitable for direct purification and further analyses. Using the variable region of single domain llama antibodies, we showed that the co-expression of antigen-antibody pairs is feasible in both the periplasm and the cytoplasm of bacteria. Moreover, the complexes that were formed in vivo could be purified using a tag fused to the recombinant antibody and remained stable during gel-filtration. The co-expression and co-purification strategy significantly increased the final protein yields promoting the accumulation of functional intrabodies. The described method may offer a suitable alternative for the purification of proteins intended for crystallization trials and it may also be used as a general purification protocol for both antigens and recombinant antibodies. © 2010 Elsevier Inc. All rights reserved.


Aliprandi M.,Protein Chemistry Unit | Sparacio E.,Protein Chemistry Unit | Pivetta F.,Unit of Experimental Oncology | Ossolengo G.,Protein Chemistry Unit | And 3 more authors.
Journal of Biomedicine and Biotechnology | Year: 2010

Antibodies are indispensable reagents in basic research, and those raised against tags constitute a useful tool for the evaluation of the biochemistry and biology of novel proteins. In this paper, we describe the isolation and characterization of a single-domain recombinant antibody (VHH) specific for the SNAP-tag, using Twist2 as a test-protein. The antibody was efficient in western blot, immunoprecipitation, immunopurification, and immunofluorescence. The sequence corresponding to the anti-SNAP has been subcloned for large-scale expression in vectors that allow its fusion to either a 6xHis-tag or the Fc domain of rabbit IgG2 taking advantage of a new plasmid that was specifically designed for VHH antibodies. The two different fusion antibodies were compared in immunopurification and immunofluorescence experiments, and the recombinant protein SNAP-Twist2 was accurately identified by the anti-SNAP Fc-VHH construct in the nuclear/nucleolar subcellular compartment. Furthermore, such localization was confirmed by direct Twist2 identification by means of anti-Twisit2 VHH antibodies recovered after panning of the same nave phage display library used to isolate the anti-SNAP binders. Our successful localization of Twist2 protein using the SNAP-tag-based approach and the anti-Twist2-specific recombinant single-domain antibodies opens new research possibilities in this field. Copyright © 2010 Marisa Aliprandi et al.


De Marni M.L.,Tethis S.p.A. | Monegal A.,Protein Chemistry Unit | Venturini S.,Tethis S.p.A. | Vinati S.,Tethis S.p.A. | And 4 more authors.
Methods | Year: 2012

The preparation of effective conventional antibody microarrays depends on the availability of high quality material and on the correct accessibility of the antibody active moieties following their immobilization on the support slide. We show that spotting bacteria that expose recombinant antibodies on their external surface directly on nanostructured-TiO 2 or epoxy slides (purification-independent microarray - PIM) is a simple and reliable alternative for preparing sensitive and specific microarrays for antigen detection. Variable domains of single heavy-chain antibodies (VHHs) against fibroblast growth factor receptor 1 (FGFR1) were used to capture the antigen diluted in serum or BSA solution. The FGFR1 detection was performed by either direct antigen labeling or using a sandwich system in which FGFR1 was first bound to its antibody and successively identified using a labeled FGF. In both cases the signal distribution within each spot was uniform and spot morphology regular. The signal-to-noise ratio of the signal was extremely elevated and the specificity of the system was proved statistically. The LOD of the system for the antigen was calculated being 0.4ng/mL and the dynamic range between 0.4ng/mL and 10μg/mL. The microarrays prepared with bacteria exposing antibodies remain fully functional for at least 31days after spotting. We finally demonstrated that the method is suitable for other antigen-antibody pairs and expect that it could be easily adapted to further applications such as the display of scFv and IgG antibodies or the autoantibody detection using protein PIMs. © 2011.


Veggiani G.,Protein Chemistry Unit | De Marco A.,Protein Chemistry Unit | De Marco A.,University of Nova Gorica
Protein Expression and Purification | Year: 2011

Camelidae single domain antibodies (VHHs) have structural and binding features that render them suitable alternatives to conventional IgG antibodies. VHHs are usually easier to produce as recombinant proteins than other antibody fragments. However, for some of the biotechnological applications for which they have been proposed, such as immunochromatography and assisted-crystallography, large amounts of purified antibodies are necessary, whereas some VHH-fusions with common tags such as GFP and SNAP are poorly expressed in the bacterial periplasm. Here we have shown that the co-expression of Erv1p sulfhydryl oxidase resulted in an astonishing yield increase of VHH-SNAP constructs expressed in the bacterial cytoplasm. The resulting recombinant antibodies were also more stable than the antibodies produced using the same plasmid, but in wild-type bacteria. Using this approach, it was possible to obtain tens of milligram of purified fusion antibodies using a basic flask fermentation protocol. Therefore, the described method represents a valid solution to produce inexpensively large amounts of single domain antibodies for in vitro applications and we expect it will be suitable for the production of other antibody fragments. © 2011 Elsevier Inc. All rights reserved.


PubMed | Protein Chemistry Unit
Type: Journal Article | Journal: Protein expression and purification | Year: 2010

Immunoaffinity is an established chromatographic method for isolating macromolecules independently on the presence of specific tags while the tight interaction between antigen and antibody has been exploited to stabilize proteins during crystallization trials. Therefore, it seems reasonable to try to combine the two protocols, namely to co-express the target proteins together with their specific antibodies to obtain stable complexes suitable for direct purification and further analyses. Using the variable region of single domain llama antibodies, we showed that the co-expression of antigen-antibody pairs is feasible in both the periplasm and the cytoplasm of bacteria. Moreover, the complexes that were formed in vivo could be purified using a tag fused to the recombinant antibody and remained stable during gel-filtration. The co-expression and co-purification strategy significantly increased the final protein yields promoting the accumulation of functional intrabodies. The described method may offer a suitable alternative for the purification of proteins intended for crystallization trials and it may also be used as a general purification protocol for both antigens and recombinant antibodies.


PubMed | Protein Chemistry Unit
Type: Journal Article | Journal: Protein expression and purification | Year: 2011

Camelidae single domain antibodies (VHHs) have structural and binding features that render them suitable alternatives to conventional IgG antibodies. VHHs are usually easier to produce as recombinant proteins than other antibody fragments. However, for some of the biotechnological applications for which they have been proposed, such as immunochromatography and assisted-crystallography, large amounts of purified antibodies are necessary, whereas some VHH-fusions with common tags such as GFP and SNAP are poorly expressed in the bacterial periplasm. Here we have shown that the co-expression of Erv1p sulfhydryl oxidase resulted in an astonishing yield increase of VHH-SNAP constructs expressed in the bacterial cytoplasm. The resulting recombinant antibodies were also more stable than the antibodies produced using the same plasmid, but in wild-type bacteria. Using this approach, it was possible to obtain tens of milligram of purified fusion antibodies using a basic flask fermentation protocol. Therefore, the described method represents a valid solution to produce inexpensively large amounts of single domain antibodies for in vitro applications and we expect it will be suitable for the production of other antibody fragments.

Loading Protein Chemistry Unit collaborators
Loading Protein Chemistry Unit collaborators