Entity

Time filter

Source Type

Lexington, MA, United States

Duffield J.S.,University of Washington | Lupher M.,Promedior | Thannickal V.J.,University of Alabama at Birmingham | Wynn T.A.,National Institute of Allergy and Infectious Diseases
Annual Review of Pathology: Mechanisms of Disease | Year: 2013

Myofibroblasts accumulate in the spaces between organ structures and produce extracellular matrix (ECM) proteins, including collagen I. They are the primary "effector" cells in tissue remodeling and fibrosis. Previously, leukocyte progenitors termed fibrocytes and myofibroblasts generated from epithelial cells through epithelial-to-mesenchymal transition (EMT) were considered the primary sources of ECM-producing myofibroblasts in injured tissues. However, genetic fate mapping experiments suggest that mesenchyme-derived cells, known as resident fibroblasts, and pericytes are the primary precursors of scar-forming myofibroblasts, whereas epithelial cells, endothelial cells, and myeloid leukocytes contribute to fibrogenesis predominantly by producing key fibrogenic cytokines and by promoting cell-to-cell communication. Numerous cytokines derived from T cells, macrophages, and other myeloid cell populations are important drivers of myofibroblast differentiation. Monocyte-derived cell populations are key regulators of the fibrotic process: They act as a brake on the processes driving fibrogenesis, and they dismantle and degrade established fibrosis. We discuss the origins, modes of activation, and fate of myofibroblasts in various important fibrotic diseases and describe how manipulation of macrophage activation could help ameliorate fibrosis. © 2013 by Annual Reviews. All rights reserved. Source


Duffield J.S.,Brigham and Womens Hospital | Lupher Jr. M.L.,Promedior
Drug News and Perspectives | Year: 2010

Serum amyloid P or pentraxin 2 (PTX2) is a highly phylogenetically conserved, naturally circulating plasma protein and a soluble pattern recognition receptor of the innate immune system. The unique binding activities of PTX2 suggest that it may localize specifically to sites of injury and function to aid in the removal of damaged tissue. The recent discovery of its ability to regulate certain monocyte differentiation states has identified PTX2 as a novel and potentially powerful antifibrotic agent. A fully recombinant form of the human PTX2 protein, designated PRM-151, has recently initiated human clinical trials. Here we review the molecular, cellular and structural biology of PRM-151/PTX2 in vitro and in several in vivo preclinical models of fibrotic disease that demonstrate its potential as a first-in-class natural modulator of fibrotic pathology with significant potential to treat a wide variety of human diseases. Copyright © 2010 Prous Science, S A.U. or its licensors All rights reserved. Source


Patent
Promedior | Date: 2012-12-21

Functionalized pentraxin-2 (PTX-2) protomers and functionalized PTX-2 pentamers, methods for preparing functionalized PTX-2 protomers and functionalized PTX-2 pentamers, pharmaceutical compositions including functionalized PTX-2 pentamers, and methods for using the same are described herein.


Patent
Promedior | Date: 2012-09-07

The disclosure relates to methods for delivery of serum amyloid P to the respiratory system. Pharmaceutical compositions comprising SAP suitable for respiratory delivery are also provided.


Patent
Promedior | Date: 2012-11-06

Polypeptides are susceptible to denaturation or enzymatic degradation in the blood, liver or kidney. Due to the low stability of some polypeptides, it has been required to administer polypeptide drugs in a sustained frequency to a subject in order to maintain an effective plasma concentration of the active substance. Furthermore, pharmaceutical compositions of therapeutic peptides preferably have a shelf-life of several years in order to be suitable for common use. However, peptide compositions are inherently unstable due to sensitivity towards chemical and physical degradation. In part, the invention provides SAP variant proteins, compositions, pharmaceutical preparations and formulations having a prolonged in vivo half-life, prolonged shelf-life, or rather increased in vitro stability, or increased manufacturing efficiency compared to human SAP. Advantages of increased plasma half-life include, but are not limited to, reducing the amount and/or frequency of dosing.

Discover hidden collaborations