Salt Lake City, UT, United States
Salt Lake City, UT, United States

Time filter

Source Type

Dolan P.T.,Purdue University | Zhang C.,Purdue University | Khadka S.,Purdue University | Arumugaswami V.,University of California at Los Angeles | And 8 more authors.
Molecular BioSystems | Year: 2013

Hepatitis C virus (HCV) alters the global behavior of the host cell to create an environment conducive to its own replication, but much remains unknown about how HCV proteins elicit these changes. Thus, a better understanding of the interface between the virus and host cell is required. Here we report the results of a large-scale yeast two-hybrid screen to identify protein-protein interactions between HCV genotype 2a (strain JFH1) and cellular factors. Our study identified 112 unique interactions between 7 HCV and 94 human proteins, over 40% of which have been linked to HCV infection by other studies. These interactions develop a more complete picture of HCV infection, providing insight into HCV manipulation of pathways, such as lipid and cholesterol metabolism, that were previously linked to HCV infection and implicating novel targets within microtubule-organizing centers, the complement system and cell cycle regulatory machinery. In an effort to understand the relationship between HCV and related viruses, we compared the HCV 2a interactome to those of other HCV genotypes and to the related dengue virus. Greater overlap was observed between HCV and dengue virus targets than between HCV genotypes, demonstrating the value of parallel screening approaches when comparing virus-host cell interactomes. Using siRNAs to inhibit expression of cellular proteins, we found that five of the ten shared targets tested (CUL7, PCM1, RILPL2, RNASET2, and TCF7L2) were required for replication of both HCV and dengue virus. These shared interactions provide insight into common features of the viral life cycles of the family Flaviviridae. © 2013 The Royal Society of Chemistry.


Lee S.,University of California at Los Angeles | Salwinski L.,University of California at Los Angeles | Zhang C.,Purdue University | Chu D.,University of California at Los Angeles | And 11 more authors.
PLoS Pathogens | Year: 2011

Genome-wide yeast two-hybrid (Y2H) screens were conducted to elucidate the molecular functions of open reading frames (ORFs) encoded by murine γ-herpesvirus 68 (MHV-68). A library of 84 MHV-68 genes and gene fragments was generated in a Gateway entry plasmid and transferred to Y2H vectors. All possible pair-wise interactions between viral proteins were tested in the Y2H assay, resulting in the identification of 23 intra-viral protein-protein interactions (PPIs). Seventy percent of the interactions between viral proteins were confirmed by co-immunoprecipitation experiments. To systematically investigate virus-cellular protein interactions, the MHV-68 Y2H constructs were screened against a cellular cDNA library, yielding 243 viral-cellular PPIs involving 197 distinct cellar proteins. Network analyses indicated that cellular proteins targeted by MHV-68 had more partners in the cellular PPI network and were located closer to each other than expected by chance. Taking advantage of this observation, we scored the cellular proteins based on their network distances from other MHV-68-interacting proteins and segregated them into high (Y2H-HP) and low priority/not-scored (Y2H-LP/NS) groups. Significantly more genes from Y2H-HP altered MHV-68 replication when their expression was inhibited with siRNAs (53% of genes from Y2H-HP, 21% of genes from Y2H-LP/NS, and 16% of genes randomly chosen from the human PPI network; p&0.05). Enriched Gene Ontology (GO) terms in the Y2H-HP group included regulation of apoptosis, protein kinase cascade, post-translational protein modification, transcription from RNA polymerase II promoter, and IκB kinase/NFκB cascade. Functional validation assays indicated that PCBP1, which interacted with MHV-68 ORF34, may be involved in regulating late virus gene expression in a manner consistent with the effects of its viral interacting partner. Our study integrated Y2H screening with multiple functional validation approaches to create γ-herpes viral-viral and viral-cellular protein interaction networks. © 2011 Lee et al.


Tourette C.,Buck Institute for Research on Aging | Li B.,Buck Institute for Research on Aging | Bell R.,Prolexys Pharmaceuticals | Bell R.,University of Utah | And 5 more authors.
Journal of Biological Chemistry | Year: 2014

Background: Huntington disease is a fatal neuropsychiatric disorder caused by aberrant protein folding and interactions. Results: An interaction network composed of primary and secondary huntingtin-interacting proteins is significantly enriched for pathways implicated in HD, including RhoGTPases. Conclusion: Huntingtin interacts with members of the Rho GTPase signaling pathways and regulates filipodial dynamics. Significance: This protein interaction network provides a resource for HD target discovery. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.


Khadka S.,Purdue University | Vangeloff A.D.,Purdue University | Zhang C.,Purdue University | Siddavatam P.,Purdue University | And 9 more authors.
Molecular and Cellular Proteomics | Year: 2011

Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

Loading Prolexys Pharmaceuticals collaborators
Loading Prolexys Pharmaceuticals collaborators