Time filter

Source Type

Haverhill, MA, United States

Blanco M.A.,Princeton University | Leroy G.,Princeton University | Khan Z.,Princeton University | Khan Z.,University of Chicago | And 5 more authors.
Cell Research | Year: 2012

Bone is the one of the most common sites of distant metastasis of solid tumors. Secreted proteins are known to influence pathological interactions between metastatic cancer cells and the bone stroma. To comprehensively profile secreted proteins associated with bone metastasis, we used quantitative and non-quantitative mass spectrometry to globally analyze the secretomes of nine cell lines of varying bone metastatic ability from multiple species and cancer types. By comparing the secretomes of parental cells and their bone metastatic derivatives, we identified the secreted proteins that were uniquely associated with bone metastasis in these cell lines. We then incorporated bioinformatic analyses of large clinical metastasis datasets to obtain a list of candidate novel bone metastasis proteins of several functional classes that were strongly associated with both clinical and experimental bone metastasis. Functional validation of selected proteins indicated that in vivo bone metastasis can be promoted by high expression of (1) the salivary cystatins CST1, CST2, and CST4; (2) the plasminogen activators PLAT and PLAU; or (3) the collagen functionality proteins PLOD2 and COL6A1. Overall, our study has uncovered several new secreted mediators of bone metastasis and therefore demonstrated that secretome analysis is a powerful method for identification of novel biomarkers and candidate therapeutic targets. © 2012 IBCB, SIBS, CAS All rights reserved. Source

Sethi N.,Princeton University | Kang Y.,Princeton University | Kang Y.,Progression
Nature Reviews Cancer | Year: 2011

Despite recognizing the devastating consequences of metastasis, we are not yet able to effectively treat cancer that has spread to vital organs. The inherent complexity of genomic alterations in late-stage cancers, coupled with numerous heterotypic interactions that occur between tumour and stromal cells, represent fundamental challenges in our quest to understand and control metastatic disease. The incorporation of genomic and other systems level approaches, as well as technological breakthroughs in imaging and animal modelling, have galvanized the effort to overcome gaps in our understanding of metastasis. Future research carries with it the potential to translate the wealth of new knowledge and conceptual advances into effective targeted therapies. © 2011 Macmillan Publishers Limited. All rights reserved. Source

Korpal M.,Princeton University | Ell B.J.,Princeton University | Buffa F.M.,University of Oxford | Ibrahim T.,Osteoncology Center | And 15 more authors.
Nature Medicine | Year: 2011

Although the role of miR-200s in regulating E-cadherin expression and epithelial-to-mesenchymal transition is well established, their influence on metastatic colonization remains controversial. Here we have used clinical and experimental models of breast cancer metastasis to discover a pro-metastatic role of miR-200s that goes beyond their regulation of E-cadherin and epithelial phenotype. Overexpression of miR-200s is associated with increased risk of metastasis in breast cancer and promotes metastatic colonization in mouse models, phenotypes that cannot be recapitulated by E-cadherin expression alone. Genomic and proteomic analyses revealed global shifts in gene expression upon miR-200 overexpression toward that of highly metastatic cells. miR-200s promote metastatic colonization partly through direct targeting of Sec23a, which mediates secretion of metastasis-suppressive proteins, including Igfbp4 and Tinagl1, as validated by functional and clinical correlation studies. Overall, these findings suggest a pleiotropic role of miR-200s in promoting metastatic colonization by influencing E-cadherin-dependent epithelial traits and Sec23a-mediated tumor cell secretome. © 2011 Nature America, Inc. All rights reserved. Source

Zheng H.,Princeton University | Shen M.,Princeton University | Shen M.,Zhejiang University | Zha Y.-L.,Sun Yat Sen University | And 9 more authors.
Cancer Cell | Year: 2014

Metastatic dissemination is often initiated by the reactivation of an embryonic development program referred to as epithelial-mesenchymal transition (EMT). The transcription factor SNAIL promotes EMT and elicits associated pathological characteristics such as invasion, metastasis, and stemness. To better understand the posttranslational regulation of SNAIL, we performed a luciferase-based, genome-wide E3 ligase siRNA library screen and identified SCF-FBXO11 as an important E3 that targets SNAIL for ubiquitylation and degradation. Furthermore, we discovered that SNAIL degradation by FBXO11 is dependent on Ser-11 phosphorylation of SNAIL by protein kinase D1 (PKD1). FBXO11 blocks SNAIL-induced EMT, tumor initiation, and metastasis in multiple breast cancer models. These findings establish the PKD1-FBXO11-SNAIL axis as a mechanism of posttranslational regulation of EMT and cancer metastasis. © 2014 Elsevier Inc. Source

Sethi N.,Princeton University | Kang Y.,Princeton University | Kang Y.,Progression
Bone | Year: 2011

It is well-known that pathways normally functioning during embryonic development are dysregulated in cancer. Experimental and clinical studies have established strong connections between aberrant developmental pathways and transformation, as well as other early stage events of cancer progression. There is now emerging evidence that also indicates the contribution of developmental pathways to the pathogenesis of distant metastasis, including bone metastasis. In particular, the Wnt, BMP, and Hedgehog signaling pathways have all been implicated in the development of bone metastasis. These developmental pathways participate in the regulation of cell-autonomous functions in tumor cells as well as tumor-stromal interactions in the bone microenvironment, eventually promoting the formation of osteolytic or osteoblastic bone metastasis. © 2010 Elsevier Inc. Source

Discover hidden collaborations