Programme Cartes dIdentite des Tumeurs

Paris, France

Programme Cartes dIdentite des Tumeurs

Paris, France
SEARCH FILTERS
Time filter
Source Type

Burnichon N.,French Institute of Health and Medical Research | Burnichon N.,University of Paris Descartes | Buffet A.,French Institute of Health and Medical Research | Buffet A.,University of Paris Descartes | And 19 more authors.
Human Molecular Genetics | Year: 2012

Germline mutations in the RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, MAX, TMEM127, NF1 or VHL genes are identified in about 30% of patients with pheochromocytoma or paraganglioma and somatic mutations in RET, VHL or MAX genes are reported in 17% of sporadic tumors. In the present study, using mutation screening of the NF1 gene, mapping of chromosome aberrations by single nucleotide polymorphism (SNP) array, microarray-based expression profiling and immunohistochemistry (IHC), we addressed the implication of NF1 somatic alterations in pheochromocytomas and paragangliomas. We studied 53 sporadic tumors, selected because of their classification with RET/NF1/TMEM127-related tumors by genome wide expression studies, as well as a second set of 11 independent tumors selected on their low individual levels of NF1 expression evaluated by microarray. Direct sequencing of the NF1 gene in tumor DNA identified the presence of an inactivating NF1 somatic mutation in 41% (25/61) of analyzed sporadic tumors, associated with loss of the wild-type allele in 84% (21/25) of cases. Gene expression signature of NF1-related tumors highlighted the downregulation of NF1 and the major overexpression of SOX9. Among the second set of 11 tumors, two sporadic tumors carried somatic mutations in NF1 as well as in another susceptibility gene. These new findings suggest that NF1 loss of function is a frequent event in the tumorigenesis of sporadic pheochromocytoma and strengthen the new concept of molecular-based targeted therapy for pheochromocytoma or paraganglioma. © The Author 2012. Published by Oxford University Press.


Letouze E.,Programme Cartes dIdentite des Tumeurs | Martinelli C.,French Institute of Health and Medical Research | Martinelli C.,University of Paris Descartes | Loriot C.,French Institute of Health and Medical Research | And 28 more authors.
Cancer Cell | Year: 2013

Paragangliomas are neuroendocrine tumors frequently associated with mutations in RET, NF1, VHL, and succinate dehydrogenase (SDHx) genes. Methylome analysis of a large paraganglioma cohort identified three stable clusters, associated with distinct clinical features and mutational status. SDHx-related tumors displayed a hypermethylator phenotype, associated with downregulation of key genes involved in neuroendocrine differentiation. Succinate accumulation in SDH-deficient mouse chromaffin cells led to DNA hypermethylation by inhibition of 2-OG-dependent histone and DNA demethylases and established a migratory phenotype reversed by decitabine treatment. Epigenetic silencing was particularly severe in SDHB-mutated tumors, potentially explaining their malignancy. Finally, inactivating FH mutations were identified in the only hypermethylated tumor without SDHx mutations. These findings emphasize the interplay between the Krebs cycle, epigenomic changes, and cancer. © 2013 Elsevier Inc.


Pilati C.,French Institute of Health and Medical Research | Pilati C.,University of Paris Descartes | Letouze E.,Programme Cartes dIdentite des Tumeurs | Nault J.-C.,French Institute of Health and Medical Research | And 31 more authors.
Cancer Cell | Year: 2014

Hepatocellular adenomas (HCA) are benign liver tumors predominantly developed in women using oral contraceptives. Here, exome sequencing identified recurrent somatic FRK mutations that induce constitutive kinase activity, STAT3 activation, and cell proliferation sensitive to Src inhibitors. We also found uncommon recurrent mutations activating JAK1, gp130, or β-catenin. Chromosome copy number and methylation profiling revealed patterns that correlated with specific gene mutations and tumor phenotypes. Finally, integrative analysis of HCAs transformed to hepatocellular carcinoma revealed β-catenin mutation as an early alteration and TERT promoter mutations as associated with the last step of the adenoma-carcinoma transition. In conclusion, we identified the genomic diversity in benign hepatocyte proliferation, several therapeutic targets, and the key genomic determinants of the adenoma-carcinoma transformation sequence. © 2014 Elsevier Inc.


Villanueva A.,Mount Sinai School of Medicine | Villanueva A.,University of Barcelona | Portela A.,Bellvitge Biomedical Research Institute IDIBELL | Sayols S.,Bellvitge Biomedical Research Institute IDIBELL | And 21 more authors.
Hepatology | Year: 2015

Epigenetic deregulation has emerged as a driver in human malignancies. There is no clear understanding of the epigenetic alterations in hepatocellular carcinoma (HCC) and of the potential role of DNA methylation markers as prognostic biomarkers. Analysis of tumor tissue from 304 patients with HCC treated with surgical resection allowed us to generate a methylation-based prognostic signature using a training-validation scheme. Methylome profiling was done with the Illumina HumanMethylation450 array (Illumina, Inc., San Diego, CA), which covers 96% of known cytosine-phosphate-guanine (CpG) islands and 485,000 CpG, and transcriptome profiling was performed with Affymetrix Human Genome U219 Plate (Affymetrix, Inc., Santa Clara, CA) and miRNA Chip 2.0. Random survival forests enabled us to generate a methylation signature based on 36 methylation probes. We computed a risk score of mortality for each individual that accurately discriminated patient survival both in the training (221 patients; 47% hepatitis C-related HCC) and validation sets (n=83; 47% alcohol-related HCC). This signature correlated with known predictors of poor outcome and retained independent prognostic capacity of survival along with multinodularity and platelet count. The subset of patients identified by this signature was enriched in the molecular subclass of proliferation with progenitor cell features. The study confirmed a high prevalence of genes known to be deregulated by aberrant methylation in HCC (e.g., Ras association [RalGDS/AF-6] domain family member 1, insulin-like growth factor 2, and adenomatous polyposis coli) and other solid tumors (e.g., NOTCH3) and describes potential candidate epidrivers (e.g., septin 9 and ephrin B2). Conclusions: A validated signature of 36 DNA methylation markers accurately predicts poor survival in patients with HCC. Patients with this methylation profile harbor messenger RNA-based signatures indicating tumors with progenitor cell features. © 2015 by the American Association for the Study of Liver Diseases.


Ablain J.,University Paris Diderot | Ablain J.,French Institute of Health and Medical Research | Ablain J.,French National Center for Scientific Research | Ablain J.,Dana-Farber Cancer Institute | And 12 more authors.
Nature Medicine | Year: 2014

Acute promyelocytic leukemia (APL) is driven by the promyelocytic leukemia (PML)-retinoic acid receptor-α (PML-RARA) fusion protein, which interferes with nuclear receptor signaling and PML nuclear body (NB) assembly. APL is the only malignancy definitively cured by targeted therapies: retinoic acid (RA) and/or arsenic trioxide, which both trigger PML-RARA degradation through nonoverlapping pathways. Yet, the cellular and molecular determinants of treatment efficacy remain disputed. We demonstrate that a functional Pml-transformation-related protein 53 (Trp53) axis is required to eradicate leukemia-initiating cells in a mouse model of APL. Upon RA-induced PML-RARA degradation, normal Pml elicits NB reformation and induces a Trp53 response exhibiting features of senescence but not apoptosis, ultimately abrogating APL-initiating activity. Apart from triggering PML-RARA degradation, arsenic trioxide also targets normal PML to enhance NB reformation, which may explain its clinical potency, alone or with RA. This Pml-Trp53 checkpoint initiated by therapy-triggered NB restoration is specific for PML-RARA-driven APL, but not the RA-resistant promyelocytic leukemia zinc finger (PLZF)-RARA variant. Yet, as NB biogenesis is druggable, it could be therapeutically exploited in non-APL malignancies. © 2014 Nature America, Inc.


Guichard C.,French Institute of Health and Medical Research | Guichard C.,University of Paris Descartes | Amaddeo G.,French Institute of Health and Medical Research | Amaddeo G.,University of Paris Descartes | And 27 more authors.
Nature Genetics | Year: 2012

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Here, we performed high-resolution copy-number analysis on 125 HCC tumors and whole-exome sequencing on 24 of these tumors. We identified 135 homozygous deletions and 994 somatic mutations of genes with predicted functional consequences. We found new recurrent alterations in four genes (ARID1A, RPS6KA3, NFE2L2 and IRF2) not previously described in HCC. Functional analyses showed tumor suppressor properties for IRF2, whose inactivation, exclusively found in hepatitis B virus (HBV)-related tumors, led to impaired TP53 function. In contrast, inactivation of chromatin remodelers was frequent and predominant in alcohol-related tumors. Moreover, association of mutations in specific genes (RPS6KA3-AXIN1 and NFE2L2-CTNNB1) suggested that Wnt/β-catenin signaling might cooperate in liver carcinogenesis with both oxidative stress metabolism and Ras/mitogen-activated protein kinase (MAPK) pathways. This study provides insight into the somatic mutational landscape in HCC and identifies interactions between mutations in oncogene and tumor suppressor gene mutations related to specific risk factors. © 2012 Nature America, Inc. All rights reserved.


PubMed | Programme Cartes dIdentite des Tumeurs, University Paul Sabatier, University of Paris Descartes and University Pierre and Marie Curie
Type: Journal Article | Journal: Clinical cancer research : an official journal of the American Association for Cancer Research | Year: 2016

The tumor microenvironment is formed by many distinct and interacting cell populations, and its composition may predict patients prognosis and response to therapies. Colorectal cancer is a heterogeneous disease in which immune classifications and four consensus molecular subgroups (CMS) have been described. Our aim was to integrate the composition of the tumor microenvironment with the consensus molecular classification of colorectal cancer.We retrospectively analyzed the composition and the functional orientation of the immune, fibroblastic, and angiogenic microenvironment of 1,388 colorectal cancer tumors from three independent cohorts using transcriptomics. We validated our findings using immunohistochemistry.We report that colorectal cancer molecular subgroups and microenvironmental signatures are highly correlated. Out of the four molecular subgroups, two highly express immune-specific genes. The good-prognosis microsatellite instable-enriched subgroup (CMS1) is characterized by overexpression of genes specific to cytotoxic lymphocytes. In contrast, the poor-prognosis mesenchymal subgroup (CMS4) expresses markers of lymphocytes and of cells of monocytic origin. The mesenchymal subgroup also displays an angiogenic, inflammatory, and immunosuppressive signature, a coordinated pattern that we also found in breast (n = 254), ovarian (n = 97), lung (n = 80), and kidney (n = 143) cancers. Pathologic examination revealed that the mesenchymal subtype is characterized by a high density of fibroblasts that likely produce the chemokines and cytokines that favor tumor-associated inflammation and support angiogenesis, resulting in a poor prognosis. In contrast, the canonical (CMS2) and metabolic (CMS3) subtypes with intermediate prognosis exhibit low immune and inflammatory signatures.The distinct immune orientations of the colorectal cancer molecular subtypes pave the way for tailored immunotherapies. Clin Cancer Res; 22(16); 4057-66. 2016 AACR.


PubMed | Programme Cartes dIdentite des Tumeurs, French Institute of Health and Medical Research, Paris-Sorbonne University and University of Paris Descartes
Type: | Journal: Advances in immunology | Year: 2016

The outcome of tumors results from genetic and epigenetic modifications of the transformed cells and also from the interactions of the malignant cells with their tumor microenvironment (TME), which includes immune and inflammatory cells. For a given cancer type, the composition of the immunological TME is not homogeneous. Heterogeneity is found between different cancer types and also between tumors from patients with the same type of cancer. Some tumors exhibit a poor infiltration by immune cells, and others are highly infiltrated by lymphocytes. Among the latter, the architecture of the TME, with the localization of immune cells in the invasive front and the center of the tumor, the presence of tumor-adjacent organized lymphoid aggregates, and the type of inflammatory context, determines the prognostic impact of the infiltrating cells. The description and the understanding of the immune and inflammatory landscape in human tumors are of paramount importance at different levels of patients care. It completes the mutational, transcriptional, and epigenetic patterns of the malignant cells and open paths to understand how tumor cells shape their immune microenvironment and are shaped by the immune reaction. It provides prognostic and theranostic markers, as well as novel targets for immunotherapies.

Loading Programme Cartes dIdentite des Tumeurs collaborators
Loading Programme Cartes dIdentite des Tumeurs collaborators