Entity

Time filter

Source Type


Borovina A.,Program in Developmental and oStem Cell Biology | Borovina A.,University of Toronto | Ciruna B.,Program in Developmental and oStem Cell Biology | Ciruna B.,University of Toronto
Cell Reports | Year: 2013

The role for cilia in establishing planar cell polarity (PCP) is contentious. Although knockdown of genes known to function in ciliogenesis has been reported to cause PCP-related morphogenesis defects in zebrafish, genetic mutations affecting intraflagellar transport (IFT) do not show PCP phenotypes despite the requirement for IFT in cilia formation. This discrepancy has been attributed to off-target effects of antisense morpholino oligonucleotide (MO) injection, confounding maternal effects in zygotic mutant embryos, or an inability to distinguish between cilia-dependent versus cilia-independent protein functions. To determine the role of cilia in PCP, we generated maternal+ zygotic IFT88 (MZ. ift88) mutant zebrafish embryos, which never form cilia. We clearly demonstrate that cilia are not required to establish PCP. Rather, IFT88 plays a cilia-independent role in controlling oriented cell divisions at gastrulation and neurulation. Our results have important implications for the interpretation of cilia gene function in normal development and in disease


Superina S.,Program in Developmental and oStem Cell Biology | Superina S.,University of Toronto | Borovina A.,Program in Developmental and oStem Cell Biology | Borovina A.,University of Toronto | And 2 more authors.
Developmental Biology | Year: 2014

Growth factors and morphogens regulate embryonic patterning, cell fate specification, cell migration, and morphogenesis. The activity and behavior of these signaling molecules are regulated in the extracellular space through interactions with proteoglycans (Bernfield et al., 1999; Perrimon and Bernfield 2000; Lander and Selleck 2000; Selleck 2000). Proteoglycans are high molecular-weight proteins consisting of a core protein with covalently linked glycosaminoglycan (GAG) side chains, which are thought to mediate ligand interaction. Drosophila mutant embryos deficient for UDP-glucose dehydrogenase activity (Ugdh, required for GAG synthesis) exhibit abnormal Fgf, Wnt and TGFß signaling and die during gastrulation, indicating a broad and critical role for proteoglycans during early embryonic development (Lin et al., 1999; Lin and Perrimon 2000) (Hacker et al., 1997). Mouse Ugdh mutants also die at gastrulation, however, only Fgf signaling appears disrupted (Garcia-Garcia and Anderson, 2003). These findings suggested a possible divergence in the requirement for proteoglycans during Drosophila and mouse embryogenesis, and that mammals may have evolved alternative means of regulating Wnt and TGFß activity. To further examine the function of proteoglycans in vertebrate development, we have characterized zebrafish mutants devoid of both maternal and zygotic Ugdh/Jekyll activity (MZ. jekyll). We demonstrate that MZ. jekyll mutant embryos display abnormal Fgf, Shh, and Wnt signaling activities, with concomitant defects in central nervous system patterning, cardiac ventricular fate specification and axial morphogenesis. Furthermore, we uncover a novel role for proteoglycans in left-right pattern formation. Our findings resolve longstanding questions into the evolutionary conservation of Ugdh function and provide new mechanistic insights into the initiation of left-right asymmetry. © 2014 The Authors.

Discover hidden collaborations