Time filter

Source Type

South Charleston, OH, United States

de Regt A.K.,Massachusetts Institute of Technology | Yin Y.,Marshall University | Yin Y.,Zhejiang Academy of Agricultural Sciences | Withers T.R.,Marshall University | And 5 more authors.
Molecular Microbiology | Year: 2014

In Pseudomonas aeruginosa, alginate overproduction, also known as mucoidy, is negatively regulated by the transmembrane protein MucA, which sequesters the alternative sigma factor AlgU. MucA is degraded via a proteolysis pathway that frees AlgU from sequestration, activating alginate biosynthesis. Initiation of this pathway normally requires two signals: peptide sequences in unassembled outer-membrane proteins (OMPs) activate the AlgW protease, and unassembled lipopolysaccharides bind periplasmic MucB, releasing MucA and facilitating its proteolysis by activated AlgW. To search for novel alginate regulators, we screened a transposon library in the non-mucoid reference strain PAO1, and identified a mutant that confers mucoidy through overexpression of a protein encoded by the chaperone-usher pathway gene cupB5. CupB5-dependent mucoidy occurs through the AlgU pathway and can be reversed by overexpression of MucA or MucB. In the presence of activating OMP peptides, peptides corresponding to a region of CupB5 needed for mucoidy further stimulated AlgW cleavage of MucAin vitro. Moreover, the CupB5 peptide allowed OMP-activated AlgW cleavage of MucA in the presence of the MucB inhibitor. These results support a novel mechanism for conversion to mucoidy in which the proteolytic activity of AlgW and its ability to compete with MucB for MucA is mediated by independent peptide signals. © 2014 John Wiley & Sons Ltd.

Yin Y.,Marshall University | Yin Y.,Zhejiang Academy of Agricultural Sciences | Withers T.R.,Marshall University | Wang X.,Zhejiang Academy of Agricultural Sciences | And 2 more authors.
PLoS ONE | Year: 2013

Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through suppressor mutations. We screened a mariner transposon library using CF149, a non-mucoid clinical isolate with a misssense mutation in algU (AlgUA61V). The wild type AlgU is a stress-related sigma factor that activates transcription of alginate biosynthesis. Three mucoid mutants were identified with transposon insertions that caused 1) an overexpression of AlgUA61V, 2) an overexpression of the stringent starvation protein A (SspA), and 3) a reduced expression of the major sigma factor RpoD (σ70). Induction of AlgUA61V in trans caused conversion to mucoidy in CF149 and PAO1DalgU, suggesting that AlgUA61V is functional in activating alginate production. Furthermore, the level of AlgUA61V was increased in all three mutants relative to CF149. However, compared to the wild type AlgU, AlgUA61V had a reduced activity in promoting alginate production in PAO1ΔalgU. SspA and three other anti-σ70 orthologues, P. aeruginosa AlgQ, E. coli Rsd, and T4 phage AsiA, all induced mucoidy, suggesting that reducing activity of RpoD is linked to mucoid conversion in CF149. Conversely, RpoD overexpression resulted in suppression of mucoidy in all mucoid strains tested, indicating that sigma factor competition can regulate mucoidy. Additionally, an RpoD-dependent promoter (PssrA) was more active in non-mucoid strains than in isogenic mucoid variants. Altogether, our results indicate that the anti-σ70 factors can induce conversion to mucoidy in P. aeruginosa CF149 with algU-suppressor mutation via modulation of RpoD. © 2013 Yin et al.

Withers T.R.,Marshall University | Yin Y.,Marshall University | Yu H.D.,Marshall University | Yu H.D.,PROGENESIS TECHNOLOGIES
Pathogens and Disease | Year: 2014

In this study, we performed whole-genome complementation using a PAO1-derived cosmid library, coupled with in vitro transposon mutagenesis, to identify gene locus PA1494 as a novel inhibitor of alginate overproduction in P. aeruginosa strains possessing a wild-type mucA. We report identification and characterization of a novel inhibitor of a mucoid biofilm produced by laboratory and clinical strains of Pseudomonas aeruginosa with a wild type MucA. © 2013 Federation of European Microbiological Societies.

A specialized culture medium for the promotion of alginate production by stable mucoid

Long T.E.,Marshall University | Keding L.C.,Marshall University | Lewis D.D.,Marshall University | Anstead M.I.,University of Kentucky | And 3 more authors.
Bioorganic and Medicinal Chemistry Letters | Year: 2016

Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in diseases of the lungs. The extracellular polymeric substances (EPS) of respiratory Pseudomonas biofilms are largely comprised of anionic molecules such as rhamnolipids and alginate that promote a mucoid phenotype. In this Letter, we examine the ability of negatively-charged fluoroquinolones to transverse the EPS and inhibit the growth of mucoid P. aeruginosa. Anionic fluoroquinolones were further compared with standard antibiotics via a novel microdiffusion assay to evaluate drug penetration through pseudomonal alginate and respiratory mucus from a patient with cystic fibrosis. © 2016 Elsevier Ltd. All rights reserved.

Discover hidden collaborations