Time filter

Source Type

Toowong, Australia

Brennan T.V.,Duke University | Lin L.,Duke University | Huang X.,Duke University | Cardona D.M.,Duke University | And 4 more authors.
Blood | Year: 2012

Graft-versus-host disease (GVHD) remains the most common cause of nonrelapse-related morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although T-cell depletion and intensive immunosuppression are effective in the control of GVHD, they are often associated with higher rates of infection and tumor recurrence. In this study, we showed that heparan sulfate (HS), an extracellular matrix component, can activate Toll-like receptor 4 on dendritic cells in vitro, leading to the enhancement of dendritic cell maturation and alloreactive T-cell responses. We further demonstrated in vivo that serum HS levels were acutely elevated at the onset of clinical GVHD in mice after allo-HSCT. Treatment with the serine protease inhibitor α1-antitrypsin decreased serum levels of HS, leading to a reduction in alloreactive T-cell responses and GVHD severity. Conversely, an HS mimetic that increased serum HS levels accelerated GVHD. In addition, in patients undergoing allo-HSCT for hematologic malignancies, serum HS levels were elevated and correlated with the severity of GVHD. These results identify a critical role for HS in promoting acute GVHD after allo-HSCT, and they suggest that modulation of HS release may have therapeutic potential for the control of clinical GVHD. © 2012 by The American Society of Hematology.

Jarrad A.M.,University of Queensland | Karoli T.,University of Queensland | Karoli T.,Progen Pharmaceuticals Limited | Blaskovich M.A.T.,University of Queensland | And 2 more authors.
Journal of Medicinal Chemistry | Year: 2015

In the past decade Clostridium difficile has become a bacterial pathogen of global significance. Epidemic strains have spread throughout hospitals, while community acquired infections and other sources ensure a constant inoculation of spores into hospitals. In response to the increasing medical burden, a new C. difficile antibiotic, fidaxomicin, was approved in 2011 for the treatment of C. difficile-associated diarrhea. Rudimentary fecal transplants are also being trialed as effective treatments. Despite these advances, therapies that are more effective against C. difficile spores and less damaging to the resident gastrointestinal microbiome and that reduce recurrent disease are still desperately needed. However, bringing a new treatment for C. difficile infection to market involves particular challenges. This review covers the current drug discovery pipeline, including both small molecule and biologic therapies, and highlights the challenges associated with in vitro and in vivo models of C. difficile infection for drug screening and lead optimization. © 2015 American Chemical Society.

Ostapoff K.T.,University of Texas Southwestern Medical Center | Awasthi N.,University of Texas Southwestern Medical Center | Cenik B.K.,University of Texas Southwestern Medical Center | Hinz S.,University of Texas Southwestern Medical Center | And 4 more authors.
Molecular Cancer Therapeutics | Year: 2013

Aggressive tumor progression, metastasis, and resistance to conventional therapies lead to an extremely poor prognosis for pancreatic ductal adenocarcinoma (PDAC). Heparanase, an enzyme expressed by multiple cell types, including tumor cells in the tumor microenvironment, has been implicated in angiogenesis and metastasis, and its expression correlates with decreased overall survival in PDAC. We evaluated the therapeutic potential of PG545, an angiogenesis and heparanase inhibitor, in experimental PDAC. PG545 inhibited the proliferation, migration, and colony formation of pancreatic cancer cells in vitro at pharmacologically relevant concentrations. Heparanase inhibition also reduced the proliferation of fibroblasts but had only modest effects on endothelial cells in vitro. Furthermore, PG545 significantly prolonged animal survival in intraperitoneal and genetic models (mPDAC: LSL-KrasG12D; Cdkn2alox/lox; p48Cre) of PDAC. PG545 also inhibited primary tumor growth and metastasis in orthotopic and genetic endpoint studies. Analysis of tumor tissue revealed that PG545 significantly decreased cell proliferation, increased apoptosis, reduced microvessel density, disrupted vascular function, and elevated intratumoral hypoxia. Elevated hypoxia is a known driver of collagen deposition and tumor progression; however, tumors from PG545-treated animals displayed reduced collagen deposition and a greater degree of differentiation compared with control or gemcitabine-treated tumors. These results highlight the potent antitumor activity of PG545 and support the further exploration of heparanase inhibitors as a potential clinical strategy for the treatment of PDAC. ©2013 AACR.

Progen Pharmaceuticals Limited | Date: 2010-12-03

The invention relates to compounds which are polysulfated oligosaccharide derivatives having activity as inhibitors of heparan sulfate-binding proteins and inhibitors of the enzyme heparanase; methods for the preparation of the compounds; compositions comprising the compounds, and use of the compounds and compositions thereof for the antiangiogenic, antimetastatic, anti-inflammatory, antimicrobial, anticoagulant and/or antithrombotic treatment, lowering of blood triglyceride levels and inhibition of cardiovascular disease of a mammalian subject.

Boyango I.,Cancer and Vascular Biology Research Center | Barash U.,Cancer and Vascular Biology Research Center | Naroditsky I.,Rambam Health Care Campus | Li J.-P.,Uppsala University | And 3 more authors.
Cancer Research | Year: 2014

Heparanase has been implicated in cancer but its contribution to the early stages of cancer development is uncertain. In this study, we utilized nontransformed human MCF10A mammary epithelial cells and two genetic mouse models [Hpa-transgenic (Hpa-Tg ) and knockout mice] to explore heparanase function at early stages of tumor development. Heparanase overexpression resulted in significantly enlarged asymmetrical acinar structures, indicating increased cell proliferation and decreased organization. This phenotype was enhanced by coexpression of heparanase variants with a mutant H-Ras gene, which was sufficient to enable growth of invasive carcinoma in vivo. These observations were extended in vivo by comparing the response of Hpa-Tg mice to a classical two-stage 12-dimethylbenz(a)anthracene (DMBA)/12-o- tetradecanoylphorbol-13-acetate (TPA) protocol for skin carcinogenesis. Hpa-Tg mice overexpressing heparanase were far more sensitive than control mice to DMBA/TPA treatment, exhibiting a 10-fold increase in the number and size of tumor lesions. Conversely, DMBA/TPA-induced tumor formation was greatly attenuated in Hpa-KO mice lacking heparanase, pointing to a critical role of heparanase in skin tumorigenesis. In support of these observations, the heparanase inhibitor PG545 potently suppressed tumor progression in this model system. Taken together, our findings establish that heparanase exerts protumorigenic properties at early stages of tumor initiation, cooperating with Ras to dramatically promote malignant development. ©2014 AACR.

Discover hidden collaborations