Profu AB

Gothenburg, Sweden

Profu AB

Gothenburg, Sweden

Time filter

Source Type

Eriksson O.,University of Gävle | Eriksson O.,Profu AB | Bisaillon M.,Profu AB | Haraldsson M.,Profu AB | Sundberg J.,Profu AB
Renewable Energy | Year: 2013

Management of municipal solid waste is an efficient method to both increase resource efficiency (material and energy recovery instead of landfill disposal) and to replace fossil fuels with renewable energy sources (waste is renewable in itself to a large extent as it contains paper, wood, food waste etc.). The paper presents the general outline and results from a comprehensive system study of future waste management. In the study a multifunctional waste management system integrated with local energy systems for district heating and electricity, wastewater treatment, agriculture and vehicle fuel production is investigated with respect to environmental impact and financial economy. Different waste technologies as well as management strategies have been tested. The treatment is facilitated through advanced sorting, efficient treatment facilities and upgrading of output products. Tools used are the ORWARE model for the waste management system and the MARTES model for the district heating system. The results for potential global warming are used as an indicator for renewable energy. In all future scenarios and for all management strategies net savings of CO2 is accomplished. Compared to a future reference the financial costs will be higher or lower depending on management strategy. © 2012 Elsevier Ltd.


Eriksson O.,Profu AB | Eriksson O.,University of Gävle | Bisaillon M.,Profu AB
Waste Management | Year: 2011

Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions have developed side by side, but so far there are very few attempts to combine them.Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions.In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems.It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models. © 2011 Elsevier Ltd.


Carlsson M.,Lulea University of Technology | Carlsson M.,AnoxKaldnes AB | Holmstrom D.,Profu AB | Bohn I.,North Western Scania Waste Management Company | And 3 more authors.
Waste Management | Year: 2015

Several methods for physical pre-treatments of source sorted organic fraction of municipal solid waste (SSOFMSW) before for anaerobic digestion (AD) are available, with the common feature that they generate a homogeneous slurry for AD and a dry refuse fraction for incineration. The selection of efficient methods relies on improved understanding of how the pre-treatment impacts on the separation and on the slurry's AD. The aim of this study was to evaluate the impact of the performance of physical pre-treatment of SSOFMSW on greenhouse-gas (GHG) emissions and on the economy of an AD system including a biogas plant with supplementary systems for heat and power production in Sweden. Based on the performance of selected Swedish facilities, as well as chemical analyses and BMP tests of slurry and refuse, the computer-based evaluation tool ORWARE was improved as to accurately describe mass flows through the physical pre-treatment and anaerobic degradation. The environmental and economic performance of the evaluated system was influenced by the TS concentration in the slurry, as well as the distribution of incoming solids between slurry and refuse. The focus to improve the efficiency of these systems should primarily be directed towards minimising the water addition in the pre-treatment provided that this slurry can still be efficiently digested. Second, the amount of refuse should be minimised, while keeping a good quality of the slurry. Electricity use/generation has high impact on GHG emissions and the results of the study are sensitive to assumptions of marginal electricity and of electricity use in the pre-treatment. © 2015 Elsevier Ltd.


PubMed | AnoxKaldnes AB, Lulea University of Technology, Profu AB and North Western Scania Waste Management Company
Type: | Journal: Waste management (New York, N.Y.) | Year: 2015

Several methods for physical pre-treatments of source sorted organic fraction of municipal solid waste (SSOFMSW) before for anaerobic digestion (AD) are available, with the common feature that they generate a homogeneous slurry for AD and a dry refuse fraction for incineration. The selection of efficient methods relies on improved understanding of how the pre-treatment impacts on the separation and on the slurrys AD. The aim of this study was to evaluate the impact of the performance of physical pre-treatment of SSOFMSW on greenhouse-gas (GHG) emissions and on the economy of an AD system including a biogas plant with supplementary systems for heat and power production in Sweden. Based on the performance of selected Swedish facilities, as well as chemical analyses and BMP tests of slurry and refuse, the computer-based evaluation tool ORWARE was improved as to accurately describe mass flows through the physical pre-treatment and anaerobic degradation. The environmental and economic performance of the evaluated system was influenced by the TS concentration in the slurry, as well as the distribution of incoming solids between slurry and refuse. The focus to improve the efficiency of these systems should primarily be directed towards minimising the water addition in the pre-treatment provided that this slurry can still be efficiently digested. Second, the amount of refuse should be minimised, while keeping a good quality of the slurry. Electricity use/generation has high impact on GHG emissions and the results of the study are sensitive to assumptions of marginal electricity and of electricity use in the pre-treatment.


Jones F.,Åbo Akademi University | Jones F.,SP Technical Research Institute of Sweden | Bisaillon M.,Profu AB | Lindberg D.,Åbo Akademi University | Hupa M.,Åbo Akademi University
Waste Management | Year: 2013

Zinc (Zn) is a chemical element that has gained more attention lately owing to its possibility to form corrosive deposits in large boilers, such as Waste-to-Energy plants. Zn enters the boilers in many different forms and particularly in waste, the amount of Zn is hard to determine due to both the heterogeneity of waste in general but also due to the fact that little is yet published specifically about the Zn levels in waste. This study aimed to determine the Zn in Swedish waste fuels by taking regular samples from seven different and geographically separate waste combustion plants over a 12-month period. The analysis shows that there is a relation between the municipal solid waste (MSW) content and the Zn-content; high MSW-content gives lower Zn-content. This means that waste combustion plants with a higher share of industrial and commercial waste and/or building and demolition waste would have a higher share of Zn in the fuel. The study also shows that in Sweden, the geographic location of the plant does not have any effect on the Zn-content. Furthermore, it is concluded that different seasons appear not to affect the Zn concentrations significantly. In some plants there was a clear correlation between the Zn-content and the content of other trace metals. © 2013 Elsevier Ltd.


O Broin E.,Chalmers University of Technology | Mata T.,Chalmers University of Technology | Goransson A.,Profu AB | Johnsson F.,Chalmers University of Technology
Energy | Year: 2013

Utilising energy efficiency to lower energy demand in buildings is a key policy goal of the European Commission. This paper presents the results of bottom-up modelling to elucidate the impact of energy efficiency on the EU building stock up to 2050 under three different scenarios. The modelling is performed for eight individual EU countries and a ninth hypothetical entity that represents the remaining nineteen EU countries. The scenarios highlight the roles of different levels of efficiency improvements in the context of increasing floor area and the demand for energy services. From the results it can be concluded that the EC 2020 goals for primary energy savings can be met by focussing on a combination of minimum efficiency construction standards, improved conversion efficiency standards for final energy to useful energy, and a ≥2% annual improvement in end-use efficiency applied at the useful energy level. A comparison of the results obtained in the present study for Spain with the estimates of savings documented in the Spanish Energy Efficiency Action Plan indicate that the plan could lead to the closing of the energy efficiency gap for buildings in that country by 2020. ≥ 2013 Elsevier Ltd.


Lundberg V.,Chalmers University of Technology | Axelsson E.,Profu AB | Mahmoudkhani M.,Chalmers University of Technology | Berntsson T.,Chalmers University of Technology
Nordic Pulp and Paper Research Journal | Year: 2013

Conversion from kraft pulp into dissolving pulp production is an interesting development since it allows the production of a pulp with higher market value, as well as the production of valuable by-products, for example, hemicellulose, lignin, electricity, and/or heat. In this paper the major energy consequences of converting a modern kraft pulp mill into dissolving pulp production were investigated. Three critical choices for process configuration were examined: a) export the hydrolysate (extracted hemicellulose liquor) to an upgrading plant vs. combustion of the hydrolysate b) level of heat integration c) type of by-products produced (electricity or lignin) The results show that conversion into dissolving pulp production affects the energy balance of the mill considerably and can drastically affect the pulp production capacity of the mill, e.g. if the recovery boiler is the bottleneck. Sending the hydrolysate to combustion decreases the pulp production capacity, whereas lignin separation can debottleneck the recovery boiler and allow for higher pulp production. A higher level of heat integration increases the possibilities for debottlenecking and/or producing by-products. The conclusion is that an economic assessment is necessary in order to identify the most attractive process configuration. This assessment will be presented in the second part of this study. © 2004-2014 Nordic Pulp & Paper Research Journal.


Lundberg V.,Chalmers University of Technology | Svensson E.,Chalmers University of Technology | Axelsson E.,Profu AB | Mahmoudkhani M.,Chalmers University of Technology
Nordic Pulp and Paper Research Journal | Year: 2013

Conversion into dissolving pulp production is an interesting pathway for kraft pulp mills experiencing decreasing marginal revenues. In this twopart study, the technical and economic consequences of the conversion have been investigated. In Part 1, the energy aspects of converting into dissolving pulp production were studied, as well as the consequences on the by-product and pulp production capacity of the converted mill. In this paper, the economic performance of different process configurations is evaluated. Our results indicate that the price of dissolving pulp and the pulp production capacity of the mill have the largest influence on the overall profitability. Accordingly, in order to achieve high profitability, it is necessary to debottleneck the mill's capacity for pulp production. Debottlenecking the recovery boiler by upgrading capacity and increasing power generation requires large investments and downtime costs but can be profitable if the price of electricity is high. Debottlenecking by means of lignin separation can nevertheless be more interesting if lignin is valued high or if investment capital is limited. Regardless of the way the recovery boiler is debottlenecked, a higher level of heat integration is always more attractive than a lower, simpler level of heat integration. © 2004-2014 Nordic Pulp & Paper Research Journal.


Goransson L.,Chalmers University of Technology | Goop J.,Chalmers University of Technology | Unger T.,Profu AB | Odenberger M.,Chalmers University of Technology | Johnsson F.,Chalmers University of Technology
Energy | Year: 2014

We evaluate the possibility to reduce congestion in the transmission grid through large-scale implementation of demand-side management (DSM) in the form of load shifting for the EU-27 countries, Norway, and Switzerland for Year 2020. A linear, cost-minimising, dispatch model that includes a DC load-flow description of the transmission system and a general representation of load shifting is used. It is assumed that the EU Member States fulfil the targets for Year 2020 in their national renewable energy action plans. In the model calculations, a reference case without load shifting is compared with cases in which the load shifting is 5%, 10%, 15% or 20% of the load. The possibility to shift load in time is added exogenously and economic incentives for DSM are not evaluated. Three types of congestion are identified: peak-load-hour congestion, low-load-hour congestion and all-hour congestion. Peak-load-hour congestion is reduced as the DSM share of the load increases, whereas low-load-hour congestion, which is typically associated with a high level of wind generation, persists at all the DSM penetration levels investigated. We show that all-hour congestion occurs between systems that have large differences in supply structure, and that the impact of DSM on all-hour congestion is low. © 2014 Elsevier Ltd.


PubMed | Profu AB
Type: | Journal: Journal of environmental management | Year: 2016

Management of municipal solid waste is an efficient method to increase resource efficiency, as well as to replace fossil fuels with renewable energy sources due to that (1) waste to a large extent is renewable as it consists of food waste, paper, wood etc. and (2) when energy and materials are recovered from waste treatment, fossil fuels can be substituted. In this paper results from a comprehensive system study of future biological treatment of readily degradable waste in two Swedish regions are presented. Different collection and separation systems for food waste in households have been applied as well as technical improvements of the biogas process as to reduce environmental impact. The results show that central sorting of a mixed fraction into recyclables, combustibles, biowaste and inert is a competitive option compared to source separation. Use of pellets is beneficial compared to direct spreading as fertiliser. Fuel pellets seem to be the most favourable option, which to a large extent depends on the circumstances in the energy system. Separation and utilisation of nitrogen in the wet part of the digestion residue is made possible with a number of technologies which decreases environmental impact drastically, however to a substantial cost in some cases.

Loading Profu AB collaborators
Loading Profu AB collaborators