Entity

Time filter

Source Type


Zwart S.R.,Universities Space Research Association | Gibson C.R.,Wyle | Mader T.H.,Alaska Native Medical Center | Ericson K.,Indiana University - Purdue University Fort Wayne | And 4 more authors.
Journal of Nutrition | Year: 2012

Approximately 20% (7 of 38) of astronauts on International Space Station (ISS) missions have developed measurable ophthalmic changes after flight. This studywas conducted to determine if the folate- and vitamin B-122dependent 1-carbon metabolic pathway is altered in these individuals. Since 2006, we have conducted experiments on the ISS to evaluate nutritional status and related biochemical indices of astronauts before, during, and after flight. Dataweremodeled to evaluate differences between individuals with ophthalmic changes (n = 5) and those without them (n = 15), all of whom were on ISS missions of 48-215 d. We also determined whether mean preflight serum concentrations of the 1-carbon metabolites and changes in measured cycloplegic refraction after flight were associated. Serum homocysteine (Hcy), cystathionine, 2-methylcitric acid (2MCA), and methylmalonic acid concentrations were 25-45% higher (P < 0.001) in astronauts with ophthalmic changes than in those without them. These differences existed before, during, and after flight. Preflight serum concentrations of Hcy and cystathionine, and mean in-flight serum folate, were correlated with change (postflight relative to preflight) values in refraction (P < 0.05), and preflight serumconcentrations of 2MCA tended to be associated (P = 0.06)with ophthalmic changes. The biochemical differences observed in crewmembers with vision issues strongly suggest that their folate2 and vitamin B-122dependent 1-carbon transfer metabolism was affected before and during flight. The consistent differences in markers of 1-carbon metabolism between those who did and those who did not develop changes in vision suggest that polymorphisms in enzymes of this pathway may interact with microgravity to cause these pathophysiologic changes. Source


Smith S.M.,Johnson Space Center | Heer M.,University of Bonn | Heer M.,Profil Institute for Metabolic Research GmbH | Wang Z.,Enterprise Advisory Services | And 2 more authors.
Journal of Clinical Endocrinology and Metabolism | Year: 2012

Context: Limited data suggest that testosterone is decreased during space flight, which could contribute to bone and muscle loss. Objective: The main objective was to assess testosterone and hormone status in long- and short-duration space flight and bed rest environments and to determine relationships with other physiological systems, including bone and muscle. Design: Blood and urine samples were collected before, during, and after long-duration space flight. Samples were also collected before and after 12- to 14-d missions and from participants in 30- to 90-d bed rest studies. Setting: Space flight studies were conducted on the International Space Station and before and after Space Shuttle missions. Bed rest studies were conducted in a clinical research center setting. Data from Skylab missions are also presented. Participants: All of the participants were male, and they included 15 long-duration and nine short-duration mission crew members and 30 bed rest subjects. Main Outcome Measures: Serum total, free, and bioavailable testosterone were measured along with serumandurinary cortisol, serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and SHBG. Results: Total, free, and bioavailable testosterone was not changed during long-duration space flight but were decreased (P < 0.01) on landing day after these flights and after short-duration space flight. There were no changes in other hormones measured. Testosterone concentrations dropped before and soon after bed rest, but bed rest itself had no effect on testosterone. Conclusions: There was no evidence for decrements in testosterone during long-duration space flight or bed rest. Copyright © 2012 by The Endocrine Society. Source


Graf S.,University of Bonn | Egert S.,University of Bonn | Heer M.,Profil Institute for Metabolic Research GmbH
Current Opinion in Clinical Nutrition and Metabolic Care | Year: 2011

Purpose of Review: Epidemiological studies indicate that the consumption of milk and dairy products is inversely associated with a lower risk of metabolic disorders and cardiovascular diseases. In particular, whey protein seems to induce these effects because of bioactive compounds such as lactoferrin, immunoglobulins, glutamine and lactalbumin. In addition, it is an excellent source of branch chained amino acids. This review summarizes recent findings on the effects of whey protein on metabolic disorders and the musculoskeletal system. Recent Findings: We identified 25 recently published intervention trials examining chronic and/or acute effects of whey protein supplementation on lipid and glucose metabolism, blood pressure, vascular function and on the musculoskeletal system. Whey protein appears to have a blood glucose and/or insulin lowering effect partly mediated by incretins. In addition, whey protein may increase muscle protein synthesis. In contrast there are no clear-cut effects shown on blood lipids and lipoproteins, blood pressure and vascular function. For bone metabolism the data are scarce. Summary: In summary, whey protein may affect glucose metabolism and muscle protein synthesis. However, the evidence for a clinical efficacy is not strong enough to make final recommendations with respect to a specific dose and the duration of supplementation. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins. Source


Stirban A.,Heart and Diabetes Center | Stirban A.,Profil Institute for Metabolic Research GmbH | Pop A.,Heart and Diabetes Center | Tschoepe D.,Heart and Diabetes Center
Diabetic Medicine | Year: 2013

Aims: In a pilot study we suggested that benfotiamine, a thiamine prodrug, prevents postprandial endothelial dysfunction in people with Type 2 diabetes mellitus. The aim of this study was to test these effects in a larger population. Methods: In a double-blind, placebo-controlled, randomized, crossover study, 31 people with Type 2 diabetes received 900 mg/day benfotiamine or a placebo for 6 weeks (with a washout period of 6 weeks between). At the end of each treatment period, macrovascular and microvascular function were assessed, together with variables of autonomic nervous function in a fasting state, as well as 2, 4 and 6 h following a heated, mixed test meal. Results: Participants had an impaired baseline flow-mediated dilatation (2.63 ± 2.49%). Compared with the fasting state, neither variable changed postprandially following the placebo treatment. The 6 weeks' treatment with high doses of benfotiamine did not alter this pattern, either in the fasting state or postprandially. Among a subgroup of patients with the highest flow-mediated dilatation, following placebo treatment there was a significant postprandial flow-mediated dilatation decrease, while this effect was attenuated by benfotiamine pretreatment. Conclusions: In people with Type 2 diabetes and markedly impaired fasting flow-mediated dilatation, a mixed test meal does not further deteriorate flow-mediated dilatation or variables of microvascular or autonomic nervous function. Because no significant deterioration of postprandial flow-mediated dilatation, microvascular or autonomic nervous function tests occurred after placebo treatment, a prevention of the postprandial deterioration of these variables with benfotiamine was not feasible. © 2013 Diabetes UK. Source


Smith S.M.,NASA | Heer M.A.,University of Bonn | Heer M.A.,Profil Institute for Metabolic Research GmbH | Shackelford L.C.,NASA | And 3 more authors.
Journal of Bone and Mineral Research | Year: 2012

Exercise has shown little success in mitigating bone loss from long-duration spaceflight. The first crews of the International Space Station (ISS) used the "interim resistive exercise device" (iRED), which allowed loads of up to 297 lbf (or 1337 N) but provided little protection of bone or no greater protection than aerobic exercise. In 2008, the Advanced Resistive Exercise Device (ARED), which allowed absolute loads of up to 600 lbf (1675 N), was launched to the ISS. We report dietary intake, bone densitometry, and biochemical markers in 13 crewmembers on ISS missions from 2006 to 2009. Of these 13, 8 had access to the iRED and 5 had access to the ARED. In both groups, bone-specific alkaline phosphatase tended to increase during flight toward the end of the mission (p = 0.06) and increased 30 days after landing (p < 0.001). Most markers of bone resorption were also increased in both groups during flight and 30 days after landing (p < 0.05). Bone densitometry revealed significant interactions (time and exercise device) for pelvis bone mineral density (BMD) and bone mineral content (p < 0.01), hip femoral neck BMD (p < 0.05), trochanter BMD (p < 0.05), and total hip BMD (p < 0.05). These variables were unchanged from preflight only for ARED crewmembers, who also returned from flight with higher percent lean mass and lower percent fat mass. Body mass was unchanged after flight in both groups. All crewmembers had nominal vitamin D status (75 ± 17 nmol/L) before and during flight. These data document that resistance exercise, coupled with adequate energy intake (shown by maintenance of body mass determined by dual-energy X-ray absorptiometry [DXA]) and vitamin D, can maintain bone in most regions during 4- to 6-month missions in microgravity. This is the first evidence that improving nutrition and resistance exercise during spaceflight can attenuate the expected BMD deficits previously observed after prolonged missions. © 2012 American Society for Bone and Mineral Research. Source

Discover hidden collaborations