ProDelphinus

Lima, Peru

ProDelphinus

Lima, Peru
SEARCH FILTERS
Time filter
Source Type

Gonzalez-Pestana A.,ProDelphinus | Gonzalez-Pestana A.,Scientific University of the South | Gonzalez-Pestana A.,James Cook University | Acuna-Perales N.,ProDelphinus | And 12 more authors.
Fishery Bulletin | Year: 2017

The smooth hammerhead (Sphyrna zygaena) is the third most captured shark species in Peru, a nation with one of the largest shark fisheries in the Pacific Ocean. We sought to better understand the trophic ecology of this shark in northern Peru by analyzing stomach contents. From 2013 through 2015, we collected 485 samples of gut contents from sharks measuring 53-294 cm in total length. Our results show that the smooth hammerhead is a top predator with a diet dominated by jumbo flying squid (Dosidicus gigas) and the Patagonian squid (Doryteuthis (Amerigo) gahi). Smooth hammerheads displayed different diets with different body size, and this finding indicates that sharks change their distribution and habitat during development. This study represents the most comprehensive investigation to date of the trophic ecology of smooth hammerhead in waters off Peru. We propose that these waters represent an important eastern Pacific Ocean feeding ground for smooth hammerhead. Because this species is commercially important and also preys upon other commercial species, these findings could contribute to the design and implementation of plans for ecosystembased fisheries management. © 2017, National Marine Fisheries Service. All rights reserved.


Lins L.,Ghent University | Lins L.,Federal University of Pernambuco | Leliaert F.,Ghent University | Riehl T.,University of Hamburg | And 5 more authors.
Biogeosciences | Year: 2017

Understanding processes responsible for shaping biodiversity patterns on continental margins is an important requirement for comprehending anthropogenic impacts in these environments and further management of biodiversity. Continental margins perform crucial functions linked to key ecological processes which are mainly structured by surface primary productivity and particulate organic matter flux to the seafloor, but also by heterogeneity in seafloor characteristics. However, to what extent these processes control local and regional biodiversity remains unclear. In this study, two isobathic parallel transects located at the shelf break (300-400ĝ€m) and upper slope (1000ĝ€m) of the western Iberian margin were used to test how food input and sediment heterogeneity affect nematode diversity independently from the spatial factors geographical distance and water depth. We also examined the potential role of connectedness between both depth transects through molecular phylogenetic analyses. Regional generic diversity and turnover were investigated at three levels: within a station, between stations from the same depth transect, and between transects. High variability in food availability and high sediment heterogeneity at the shelf-break transect were directly linked to high diversity within stations and higher variation in community structure across stations compared to the upper slope transect. Contrastingly, environmental factors (food availability and sediment) did not vary significantly between stations located at the upper slope, and this lack of differences were also reflected in a low community turnover between these deeper stations. Finally, differences in nematode communities between both transects were more pronounced than differences within each of the isobathic transects, but these changes were paralleled by the previously mentioned environmental changes. These results suggest that changes in community structure are mainly dictated by environmental factors rather than spatial differences at the western Iberian margin. Furthermore, phylogenetic relationships revealed no evidence for depth-endemic lineages, indicating regular species interchanges across different depths. © 2017 Author(s).


Gaos A.R.,Ocean Foundation | Gaos A.R.,San Diego State University | Abreu-Grobois F.A.,National Autonomous University of Mexico | Alfaro-Shigueto J.,ProDelphinus | And 22 more authors.
ORYX | Year: 2010

While little is known about hawksbill turtles Eretmochelys imbricata in the eastern Pacific Ocean, available information suggests that the population has declined substantially in recent decades and could be near extirpation in the region. To evaluate the current status of the population more effectively and to determine the feasibility of recovery efforts, a workshop of regional marine turtle specialists was held in June 2008 in Los Cbanos, El Salvador. An international working group, Iniciativa Carey del Pacfico Oriental (ICAPO; Eastern Pacific Hawksbill Initiative in English), was established to consolidate information, promote conservation projects and raise awareness about the species. We present information derived from the workshop and compiled by the ICAPO working group since that time. Considering only records from 1 January 2007 to 31 May 2009 it appears that El Salvador hosts the majority of known hawksbill turtle nesting activity in the eastern Pacific, with 79.6% (n = 430) of all nesting observation records, and Mexico hosts the majority of records of hawksbill turtles at sea, with 60.3% (n = 44) of all in-water observation records. Although current abundance is very low, the pervasiveness of the species in the region suggests potential for conservation and recovery. Despite a historical paucity of research focusing on this population, the relatively large and steadily increasing number of records as a result of concerted efforts demonstrates the viability of the ICAPO network as an instrument to promote conservation of this species in the eastern Pacific. © 2010 Fauna & Flora International.


Pfaller J.B.,University of Florida | Pfaller J.B.,Caretta Research Project | Alfaro-Shigueto J.,ProDelphinus | Alfaro-Shigueto J.,University of Exeter | And 8 more authors.
Journal of Experimental Marine Biology and Ecology | Year: 2014

Studying how host characteristics and ecology affect the mating systems of symbiotic crustaceans offers an opportunity to understand how ecological factors contribute to the evolution of different animal mating systems. In theory, symbiotic crustaceans should display social monogamy with long-term heterosexual pairing when hosts are relatively small in body size and structurally simple, and when hosts have relatively low abundance in habitats where the risk of mortality for symbionts (e.g., predation) away from hosts is high. We test this prediction in the mating system of the flotsam crab (Planes major) and its facultative association with loggerhead sea turtles (Caretta caretta). First, we found that the overall population and sex distributions were non-random and crabs inhabited host turtles as heterosexual pairs more frequently than expected by chance, which supports the hypothesis that P. major is socially monogamous on C. caretta. Second, we found that male crabs pair with females regardless of their reproductive state, male-female pairs do not display size-assortative pairing, crab body size and host turtle body size are not correlated, and crabs display reverse sexual dimorphism in body size and conventional sexual dimorphism in weaponry. These results do not support the hypothesis that social monogamy in P. major is always long term. Instead, our results suggest that the duration of social monogamy in P. major is likely variable and may involve some degree of host switching and intra-sexual (mostly male-male) competition. Our results were only partially consistent with theoretical considerations for how host characteristics and ecology affect the mating systems of symbiotic crustaceans, and future studies should focus on quantifying the degree and direction of host switching to better understand the factors that affect the duration of monogamous pairing when P. major associates with C. caretta. © 2014 Elsevier B.V.


Pfaller J.B.,University of Florida | Pfaller J.B.,Caretta Research Project | Alfaro-Shigueto J.,ProDelphinus | Alfaro-Shigueto J.,University of Exeter | And 8 more authors.
Marine Biology | Year: 2014

Studies that incorporate information from habitat-specific ecological interactions (e.g., epibiotic associations) can reveal valuable insights into the cryptic habitat-use patterns and behavior of marine vertebrates. Sea turtles, like other large, highly mobile marine vertebrates, are inherently difficult to study, and such information can inform the implementation of conservation measures. The presence of epipelagic epibionts, such as the flotsam crab Planes major, on sea turtles strongly suggests that neritic turtles have recently occupied epipelagic habitats (upper 200 m in areas with >200 m depth) and that epipelagic turtles spend time at or near the surface. We quantified the effects of turtle species, turtle size, and habitat (neritic or epipelagic) on the frequency of epibiosis (F 0) by P. major on sea turtles in the Pacific Ocean. In neritic habitats, we found that loggerhead (F 0 = 27.6 %) and olive ridley turtles (F 0 = 26.2 %) host crabs frequently across a wide range of body sizes, and green turtles almost never host crabs (F 0 = 0.7 %). These results suggest that loggerheads and olive ridleys display variable/flexible epipelagic-neritic transitions, while green turtles tend to transition unidirectionally at small body sizes. In epipelagic habitats, we found that loggerheads host crabs (F 0 = 92.9 %) more frequently than olive ridleys (F 0 = 50 %) and green turtles (F 0 = 38.5 %). These results suggest that epipelagic loggerheads tend to spend more time at or near the surface than epipelagic olive ridleys and green turtles. Results of this study reveal new insights into habitat-use patterns and behavior of sea turtles and display how epibiont data can supplement data from more advanced technologies to gain a better understanding of the ecology of marine vertebrates during cryptic life stages. © 2014 Springer-Verlag Berlin Heidelberg.


Velez-Zuazo X.,University of Puerto Rico at San Juan | Alfaro-Shigueto J.,ProDelphinus | Alfaro-Shigueto J.,University of Exeter | Mangel J.,ProDelphinus | And 3 more authors.
Fisheries Research | Year: 2015

Elasmobranchs are rapidly declining due to overfishing and bycatch, underlining the need for immediate protection. Critical baseline information on the diversity of targeted species is, however, often missing. Peru is a major country for shark fishery, an activity that has been under-regulated and poorly monitored, aggravated by the superficial taxonomic identifications at landing points across the country. Furthermore, most of the species landed by the shark fishery in Peru are listed as Vulnerable in the IUCN Red List. To assess the diversity of shark species targeted by fisheries in Peru we analyzed the variation of the cytochrome oxidase I (cox1) region of the mitochondrial DNA from 118 samples collected between 2004 and 2009, from six landing points. Our analysis revealed unambiguously that the 16 shark species classified by fishermen using meristic characters corresponded only to nine species. While some commonly landed species (e.g. Prionace glauca) were consistently correctly identified, for others species multiple inconsistent names were applied (e.g. Galeorhinus galeus). Our molecular characterization further allowed the identification of specimens with non-informative common names (i.e. "tiburon" = shark). In most cases the unknown specimens were Isurus oxyrinchus and P. glauca. Interestingly, all samples labeled as common thresher (Alopias vulpinus) were identified as pelagic thresher (Alopias pelagicus). Finally, one sample was equivocally identified as a dusky shark (Carcharhinus obscurus) and as a galapagos shark (Carcharhinus galapagensis) reinforcing the genetic similarity reported for these species. We generated a character-based identification library containing 26 of the 31 commercially important sharks landed in Peru and tested its performance as a species diagnostic. The library correctly identified 25 out of 28 barcodes tested, outperforming the distance-based approach. This is the first study sequencing barcodes of marine species in Peru and generated a genetic reference library of targeted shark species. We suggest that the molecular tools used are a quick and effective complement for the monitoring of the fishery of threatened shark species. A combined effort to obtain these data, by countries in the east Pacific region with an on-going shark fishery, would provide with the essential guiding information to promote the implementation of effective sustainable management plans. © 2014 Elsevier B.V.


Ortiz N.,ProDelphinus | Mangel J.C.,ProDelphinus | Mangel J.C.,University of Exeter | Wang J.,National Oceanic and Atmospheric Administration | And 10 more authors.
Marine Ecology Progress Series | Year: 2016

Gillnet fisheries exist throughout the oceans and have been implicated in high by-catch rates of sea turtles. In this study, we examined the effectiveness of illuminating nets with light-emitting diodes (LEDs) placed on floatlines in order to reduce sea turtle bycatch in a smallscale bottom-set gillnet fishery. In Sechura Bay, northern Peru, 114 pairs of control and illuminated nets were deployed. The predicted mean catch per unit effort (CPUE) of target species, standardized for environmental variables using generalized additive model (GAM) analysis, was similar for both control and illuminated nets. In contrast, the predicted mean CPUE of green turtles Chelonia mydas was reduced by 63.9% in illuminated nets. A total of 125 green turtles were caught in control nets, while 62 were caught in illuminated nets. This statistically significant re duction (GAM analysis, p < 0.05) in sea turtle bycatch suggests that net illumination could be an effective conservation tool. Challenges to implementing the use of LEDs include equipment costs, increased net handling times, and limited awareness among fishermen regarding the effectiveness of this technology. Cost estimates for preventing a single sea turtle catch are as low as 34 USD, while the costs to outfit the entire gillnet fishery in Sechura Bay can be as low as 9200 USD. Understanding these cost challenges emphasizes the need for institutional support from national ministries, inter-national non-governmental organizations and the broader fisheries industry to make possible widespread implementation of net illumination as a sea turtle bycatch reduction strategy. © The authors 2016.


News Article | March 23, 2016
Site: phys.org

Dr Jeffrey Mangel, a Darwin Initiative research fellow based in Peru, and Professor Brendan Godley, from the Centre for Ecology and Conservation at the University's Penryn Campus, were part of a team of researchers who found that attaching green battery powered light-emitting diodes (LED) to gillnets used by a small-scale fishery reduced the number of green turtle deaths by 64 per cent, without reducing the intended catch of fish. The innovative study, carried out in Sechura Bay in northern Peru was supported by ProDelphinus, the UK Government's Darwin Initiative, the National Oceanic and Atmospheric Administration and published in Marine Ecology Progress Series. It is the first time that lighting technology has been trialled in a working fishery. At a cost of £1.40 ($2) for each LED light, the research showed that the cost of saving one turtle was £24 ($34)—a sum which would be reduced if the method was rolled out at larger scale. Multiple populations of sea turtle species use Peruvian coastal waters as foraging grounds including green, olive ridley and hawksbill, loggerhead and leatherback. Peru's gillnet fleet comprises the largest component of the nation's small-scale fleet and is conservatively estimated to set 100,000 km of net per year in which thousands of turtles will die as 'bycatch' or unintentionally. The researchers used 114 pairs of nets, each typically around 500-metres in length. In each pair, one was illuminated with light-emitting diodes (LEDs) placed every ten metres along the gillnet floatline. The other net in the pair was the control and not illuminated. The control nets caught 125 green turtles while illuminated nets caught 62. The target catch of guitarfish was unaffected by the net illumination. They are now working with larger fisheries in Peru and with different coloured lights to see if the results can be repeated and applied with more critically endangered species. "This is very exciting because it is an example of something that can work in a small-scale fishery which for a number of reasons can be very difficult to work with. These lights are also one of very few options available for reducing turtle bycatch in nets," said Dr Mangel, who is one of the lead authors on the paper and ProDelphinus Research Co-ordinator. "The turtle populations in the eastern Pacific are among the world's most vulnerable and we are hoping that by reducing bycatch, particularly in gillnets, will help with the management and eventual recovery of these populations." Thousands of endangered turtles die as bycatch in gillnet fisheries around the world and it is hoped that this study will help to provide a solution. Professor Brendan Godley notes, "It is exciting to be part of research that is highlighting innovative methods that may assist the move towards sustainability in these fisheries. Understanding costings will help emphasize the need for institutional support from national ministries, international non-governmental organizations and the broader fisheries industry to make possible widespread implementation of net illumination as a sea turtle bycatch reduction strategy." "Bycatch is a complex, global issue that threatens the sustainability and resilience of our fishing communities, economies and ocean ecosystems," said Eileen Sobeck, assistant NOAA administrator for fisheries. "Funding research like this is key to NOAA's efforts to reduce bycatch. Through this work, we can better protect our natural resources." More information: N Ortiz et al. Reducing green turtle bycatch in small-scale fisheries using illuminated gillnets: the cost of saving a sea turtle, Marine Ecology Progress Series (2016). DOI: 10.3354/meps11610


News Article | March 23, 2016
Site: www.rdmag.com

Illuminating fishing nets is a cost-effective means of dramatically reducing the number of sea turtles getting caught and dying unnecessarily, conservation biologists at the University of Exeter have found. Dr Jeffrey Mangel, a Darwin Initiative research fellow based in Peru, and Professor Brendan Godley, from the Centre for Ecology and Conservation at the University's Penryn Campus, were part of a team of researchers who found that attaching green battery powered light-emitting diodes (LED) to gillnets used by a small-scale fishery reduced the number of green turtle deaths by 64 per cent, without reducing the intended catch of fish. The innovative study, carried out in Sechura Bay in northern Peru was supported by ProDelphinus, the UK Government's Darwin Initiative, the National Oceanic and Atmospheric Administration and published in Marine Ecology Progress Series. It is the first time that lighting technology has been trialled in a working fishery. At a cost of £1.40 ($2) for each LED light, the research showed that the cost of saving one turtle was £24 ($34) -- a sum which would be reduced if the method was rolled out at larger scale. Multiple populations of sea turtle species use Peruvian coastal waters as foraging grounds including green, olive ridley and hawksbill, loggerhead and leatherback. Peru's gillnet fleet comprises the largest component of the nation's small-scale fleet and is conservatively estimated to set 100,000 km of net per year in which thousands of turtles will die as 'bycatch' or unintentionally. The researchers used 114 pairs of nets, each typically around 500-metres in length. In each pair, one was illuminated with light-emitting diodes (LEDs) placed every ten metres along the gillnet floatline. The other net in the pair was the control and not illuminated. The control nets caught 125 green turtles while illuminated nets caught 62. The target catch of guitarfish was unaffected by the net illumination. They are now working with larger fisheries in Peru and with different coloured lights to see if the results can be repeated and applied with more critically endangered species. "This is very exciting because it is an example of something that can work in a small-scale fishery which for a number of reasons can be very difficult to work with. These lights are also one of very few options available for reducing turtle bycatch in nets," said Dr Mangel, who is one of the lead authors on the paper and ProDelphinus Research Co-ordinator. "The turtle populations in the eastern Pacific are among the world's most vulnerable and we are hoping that by reducing bycatch, particularly in gillnets, will help with the management and eventual recovery of these populations." Thousands of endangered turtles die as bycatch in gillnet fisheries around the world and it is hoped that this study will help to provide a solution. Professor Brendan Godley notes, "It is exciting to be part of research that is highlighting innovative methods that may assist the move towards sustainability in these fisheries. Understanding costings will help emphasize the need for institutional support from national ministries, international non-governmental organizations and the broader fisheries industry to make possible widespread implementation of net illumination as a sea turtle bycatch reduction strategy." "Bycatch is a complex, global issue that threatens the sustainability and resilience of our fishing communities, economies and ocean ecosystems," said Eileen Sobeck, assistant NOAA administrator for fisheries. "Funding research like this is key to NOAA's efforts to reduce bycatch. Through this work, we can better protect our natural resources."


News Article | March 25, 2016
Site: www.techtimes.com

Researchers created a special lighting that can illuminate fishing nets. The add-on can help sea turtles avoid capture and lower the instance of fishermen accidentally catching them. The team from the University of Exeter believed that the green light emitting diodes (LEDs) can help sea turtles spot the mesh netting and avoid it without disturbing the fish. They tested their prototype off the Peru coast in a controlled experiment. The fishing nets not fitted with LEDs had 125 green turtles caught in the netting while the lit one only had 62. The numbers of guitarfish caught by the two nets were not affected by the illuminating add-ons. Each LED light cost about £1.40 ($2). With the illuminating fishing net, the research demonstrated that saving one turtle cost only £24 ($34). This amount can still be reduced if the technology will be used on a much larger scale. "This is very exciting because it is an example of something that can work in a small-scale fishery which for a number of reasons can be very difficult to work with," said Darwin Initiative research fellow Jeffrey Mangel. Mangel added that the sea turtle's eastern Pacific populations are one of the most vulnerable in the world. Lowering the sea turtle's bycatch could help in managing and recovering its population in the region. When the turtles get caught in the fishing nets or lines, it prevents them from reaching the surface for air and end up drowning. According to the Sea Turtle Conservancy, more than 250,000 sea turtles are captured, injured or killed accidentally by fishermen in the U.S. The baits often attract the sea turtles that they end up getting caught on the hooks used in catching fish. "Bycatch is a complex, global issue that threatens the sustainability and resilience of our fishing communities, economies and ocean ecosystems," said assistant NOAA administrator for fisheries, Eileen Sobeck. The experiment was published in the Marine Ecology Progress Series journal and conducted in northern Peru's Sechura Bay. The study was supported by the National Oceanic and Atmospheric Administration, the Lima-based not-for-profit organization ProDelphinus and the Darwin Initiative by the UK Government.

Loading ProDelphinus collaborators
Loading ProDelphinus collaborators