ProCore Biomedical Ltd

Nes Ziona, Israel

ProCore Biomedical Ltd

Nes Ziona, Israel
SEARCH FILTERS
Time filter
Source Type

PubMed | ProCore Biomedical Ltd., University of Zürich and VU University Amsterdam
Type: Journal Article | Journal: BioResearch open access | Year: 2015

Intervertebral disc (IVD) degeneration is etiologically associated with low back pain and is currently only treated in severe cases with spinal fusion. Regenerative medicine attempts to restore degenerated tissue by means of cells, hydrogels, and/or growth factors and can therefore be used to slow, halt, or reverse the degeneration of the IVD in a minimally invasive manner. Previously, the growth factors bone morphogenetic proteins 2 and 7 (BMP-2, -7) were shown to enhance disc regeneration, in vitro and in vivo. Since BMPs have only a short in vivo half-life, and to prevent heterotopic ossification, we evaluated the use of a slow release system for BMP-2 homodimers and BMP-2/7 heterodimers for IVD regeneration. BMP growth factors were conjugated to a fibrin/hyaluronic acid (FB/HA) hydrogel and intradiscally injected in a goat model of mild IVD degeneration to study safety and efficacy. Mild degeneration was induced in five lumbar discs of seven adult Dutch milk goats, by injections with the enzyme chondroitinase ABC. After 12 weeks, discs were treated with either FB/HA-hydrogel only or supplemented with 1 or 5g/mL of BMP-2 or BMP-2/7. BMPs were linked to the FB/HA hydrogels using a transglutaminase moiety, to be released through an incorporated plasmin cleavage site. After another 12 weeks, goats were sacrificed and discs were assessed using radiography, MRI T2* mapping, and biochemical and histological analyses. All animals maintained weight throughout the study and no heterotopic bone formation or other adverse effects were noted during follow-up. Radiographs showed significant disc height loss upon induction of mild degeneration. MRI T2* mapping showed strong and significant correlations with biochemistry and histology as shown before. Surprisingly, no differences could be demonstrated in any parameter between intervention groups. To our knowledge, this is the first large animal study evaluating BMPs conjugated to an FB/HA-hydrogel for the treatment of mild IVD degeneration. The conjugated BMP-2 and BMP-2/7 appeared safe, but no disc regeneration was observed. Possible explanations include too low dosages, short follow-up time, and/or insufficient release of the conjugated BMPs. These aspects should be addressed in future studies.


Li Z.,AO Research Institute Davos | Kaplan K.M.,ProCore Biomedical Ltd | Wertzel A.,ProCore Biomedical Ltd | Peroglio M.,AO Research Institute Davos | And 4 more authors.
Regenerative Medicine | Year: 2014

Aim: To develop a biomimetic polymeric injectable hydrogel that can support nucleus pulposus (NP) regeneration. Materials & methods: Natural polymer-based hydrogels were synthesized using fibrinogen (FBG) and hyaluronic acid (HA), conjugated by a novel two-step procedure. Bovine NP cells were cultured in FBG-HA conjugate-based 3D beads in vitro and in a nucleotomized organ culture model. Results: FBG-HA conjugate-based hydrogels prepared with 235 KDa HA at a FBG/HA w/w ratio of 17:1 showed superior gel stability and mechanical properties and markedly increased glycosaminoglycan synthesis compared with a FBG/HA mixture-based hydrogels or fibrin gels. Gene-expression levels of NP markers were maintained in vitro. In organ culture, NP cells seeded in FBG-HA conjugate-based hydrogels showed better integration with native NP tissue compared with fibrin gels. Moreover, FBG-HA conjugate-based hydrogels restored compressive stiffness and disc height after nucleotomy under dynamic load. Conclusion: Specific FBG-HA conjugate-based hydrogels may be suitable as injectable materials for minimally invasive, biological NP regeneration. © 2014 Future Medicine Ltd.

Loading ProCore Biomedical Ltd collaborators
Loading ProCore Biomedical Ltd collaborators