Entity

Time filter

Source Type

Woburn, MA, United States

Eshed I.,Tel Aviv University | Trattnig S.,Vienna University Hospital | Sharon M.,Tel Aviv University | Arbel R.,Center for Sports Medicine | And 3 more authors.
European Journal of Radiology | Year: 2012

Objective: To evaluate change over time of clinical scores, morphological MRI of cartilage appearance and quantitative T2 values after implantation with BioCart™II, a second generation matrix-assisted implantation system. Methods: Thirty-one patients were recruited 6-49 months post surgery for cartilage defect in the femoral condyle. Subjects underwent MRI (morphological and T2-mapping sequences) and completed the International Knee Documentation Committee (IKDC) questionnaire. MRI scans were scored using the MR Observation of Cartilage Repair Tissue (MOCART) system and cartilage T2-mapping values were registered. Analysis included correlation of IKDC scores, MOCART and T2 evaluation with each other, with implant age and with previous surgical intervention history. Results: IKDC score significantly correlated with MOCART score (r = -0.39, p = 0.031), inversely correlated with previous interventions (r = -0.39, p = 0.034) and was significantly higher in patients with longer follow-up time (p = 0.0028). MOCART score was slight, but not significantly higher in patients with longer term implants (p = 0.199). T2 values were significantly lower in patients with longer duration implants (p < 0.001). This trend was repeated in patients with previous interventions, although to a lesser extent. Conclusions: Significant improvement with time from BioCart™II implantation can be expected by IKDC scoring and MRI T2-mapping values. Patients with previous knee operations can also benefit from this procedure. © 2011 Elsevier Ireland Ltd. All rights reserved.


Patent
ProChon Biotech | Date: 2012-05-07

Methods for treating diseased or injured tissue by implanting into the tissue at a site of the disease or injury a porous freeze-dried fibrin matrix formed from plasma proteins. The proteins include fibrinogen cleaved by the action of thrombin at varying concentrations sufficient to cleave the fibrinogen and Factor XIII. The matrix has less than 10% residual moisture and is devoid of exogenous anti-fibrinolytic agents, plasminogen and of organic chelating agents. Alternatively, the plasma proteins comprise partially purified plasma proteins that are devoid of plasminogen.


Trademark
ProChon Biotech | Date: 2010-07-02

Implantable biomaterial preparations for use in regenerative medicine and tissue repair; namely, surgical implants for cartilage repair, comprising living cells; Fibroblast Growth Factor Variants for medical, therapeutic and cell expansion applications. Biomaterial scaffolds and tissue repair and regeneration products for use in regenerative medicine; Cartilage repair and regeneration products for use in regenerative medicine; Therapeutic and cell expansion applications with Fibroblast Growth Factor variants.


Patent
ProChon Biotech | Date: 2012-01-11

The present invention provides fibroblast growth factor variants demonstrating enhanced receptor subtype specificity and/or affinity. Preferred embodiments include both variants having enhanced activity that act as improved agonists and variants having reduced activity that act as antagonists. Methods of utilizing preferred FGF variants in preparation of medicaments for the treatment of skeletal disorders including skeletal dysplasia, osteoporosis and enhancing bone fracture healing and cartilage healing processes are provided.


Patent
ProChon Biotech | Date: 2014-11-19

A method of treating an individual (i) having abnormal bone; or (ii) afflicted with a disease or disorder related to normal or abnormal FGF receptors or a skeletal disorder; or (iii) having dysplasic bone. The method includes administering to the individual a pharmaceutical composition comprising a therapeutically effective amount of a fibroblast growth factor 9 (FGF-9) variant comprising at least one amino acid substitution in the beta 8-beta 9 loop, wherein said FGF-9 variant incorporates one of the amino acid sequences set forth in SEQ ID NO: 11, 13, 14, 15, 16 or 17.

Discover hidden collaborations