Processum Biorefinery Initiative AB

Örnsköldsvik, Sweden

Processum Biorefinery Initiative AB

Örnsköldsvik, Sweden

Time filter

Source Type

Cavka A.,Umeå University | Alriksson B.,Processum Biorefinery Initiative AB | Rose S.H.,Stellenbosch University | Van Zyl W.H.,Stellenbosch University | Jonsson L.J.,Umeå University
Journal of Industrial Microbiology and Biotechnology | Year: 2011

The possibility to utilize fiber sludge, waste fibers from pulp mills and lignocellulose-based biorefineries, for combined production of liquid biofuel and biocatalysts was investigated. Without pretreatment, fiber sludge was hydrolyzed enzymatically to monosaccharides, mainly glucose and xylose. In the first of two sequential fermentation steps, the fiber sludge hydrolysate was fermented to cellulosic ethanol with the yeast Saccharomyces cerevisiae. Although the final ethanol yields were similar, the ethanol productivity after 9.5 h was 3.3 g/l/h for the fiber sludge hydrolysate compared with only 2.2 g/l/h for a reference fermentation with similar sugar content. In the second fermentation step, the spent fiber sludge hydrolysate (the stillage obtained after distillation) was used as growth medium for recombinant Aspergillus niger expressing the xylanase-encoding Trichoderma reesei (Hypocrea jecorina) xyn2 gene. The xylanase activity obtained with the spent fiber sludge hydrolysate (8,500 nkat/ml) was higher than that obtained in a standard medium with similar monosaccharide content (1,400 nkat/ml). Analyses based on deglycosylation with N-glycosidase F suggest that the main part of the recombinant xylanase was unglycosylated and had molecular mass of 20.7 kDa, while a minor part had N-linked glycosylation and molecular mass of 23.6 kDa. Chemical analyses of the growth medium showed that important carbon sources in the spent fiber sludge hydrolysate included xylose, small aliphatic acids, and oligosaccharides. The results show the potential of converting waste fiber sludge to liquid biofuel and enzymes as coproducts in lignocellulose-based biorefineries. © 2010 Society for Industrial Microbiology.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENERGY.2009.3.2.3 | Award Amount: 4.66M | Year: 2010

SUNLIBB brings together key researchers and industrial innovators working to overcome technical barriers all along the pipeline for second generation bioethanol production. The range of research spans from feedstock improvement, through innovations in pretreatment and saccharification, the generation of added value products, especially from lignin, and innovations in fermentation. The project brings together world-leading scientists with innovative new industries working in the biorefinery and renewable products areas. Our work is focussed on C4 grasses as these encompass maize, miscanthus and sugarcane, and these closely related species are major bioenergy crops in Europe and Brazil. The programme of work aims to: (1) Improve the feedstock quality of lignocellulose in biofuels crops to allow truly cost-effective ethanol production; (2) add value to the overall process of conversion in biomass biorefining by upgrading residues and by-products and producing new value streams in addition to bioethanol; (3) improve the conversion process by which we produce sugars; (4) improve fermentation efficiency; (5) develop integrated processes that capture maximum value from lignocellulosic biomass; (6) ensure that the new processes developed fulfil sustainability requirements by reducing GHG emissions, cutting other forms of air pollution, have minimal impacts on local environments and biodiversity, build sustainable rural industries, and do not impact on food production and prices. Our cooperative partner in Brazil, CEProBIO, brings together almost all of the leading research centres for second generation bioethanol production in that nation, along with a number of key industrial partners. The cooperation between SUNLIBB and CEProBIO represents an opportunity to bring together some of the best researchers in our respective regions to work on a globally important issue.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: NMP.2011.1.2-3 | Award Amount: 5.06M | Year: 2012

NanoSelect aims to design, develop and optimize novel bio-based foams/filters/membranes/adsorbent materials with high and specific selectivity using nanocellulose/nanochitin and combinations thereof for decentralized industrial and domestic water treatment. NanoSelect proposes a novel water purification approach combining the physical filtration process and the adsorption process exploring the capability of the nanocellulose and/or nanochitin (with or without functionalization) to selectively adsorb, store and desorb contaminants from industrial water and drinking water while passing through a highly porous or permeable membrane. Stable membranes/ filters that withstand the flux, pressure etc during the purification process with out compromising on the perm selectivity will be developed by methodologies including control of pore size, orientation of pores, layered multiple functionality, ALD treatment of the porous surface etc. Functional external stimuli sensitive filter surfaces for reduced bio fouling and enhanced filter cleaning or intelligent design of membrane modules allowing self cleaning will be attempted for antifouling and to increase the service-life of the membranes.NanoSelect focuses on the design, development and testing of membrane based prototypes in collaboration with industry with specific focus on the removal of toxic chemicals, heavy metal ions, pesticides, fertilizers etc from contaminated industrial water and portable modules with high selectivity towards bacteria for drinking water. In addition, the membranes will be evaluated for disposal by composting and its impact on environment, at the end-of-life.These biobased functional membranes provides a highly energy efficient but cheaper, biodegradable, non-toxic and green substrate for water treatment. The successful completion of NanoSelect will have far-reaching impact in decentralised water treatment technolog in developing, transitional as well as the industralised countries


Cavka A.,Umeå University | Alriksson B.,Processum Biorefinery Initiative AB | Ahnlund M.,Swedish University of Agricultural Sciences | Jonsson L.J.,Umeå University
Biotechnology and Bioengineering | Year: 2011

Recent results show that treatments with reducing agents, including the sulfur oxyanions dithionite and hydrogen sulfite, efficiently improve the fermentability of inhibitory lignocellulose hydrolysates, and that the treatments are effective when the reducing agents are added in situ into the fermentation vessel at low temperature. In the present investigation, dithionite was added to medium with model inhibitors (coniferyl aldehyde, furfural, 5-hydroxymethylfurfural, or acetic acid) and the effects on the fermentability with yeast were studied. Addition of 10mM dithionite to medium containing 2.5mM coniferyl aldehyde resulted in a nine-fold increase in the glucose consumption rate and a three-fold increase in the ethanol yield. To investigate the mechanism behind the positive effects of adding sulfur oxyanions, mixtures containing 2.5mM of a model inhibitor (an aromatic compound, a furan aldehyde, or an aliphatic acid) and 15mM dithionite or hydrogen sulfite were analyzed using mass spectrometry (MS). The results of the analyses, which were performed by using UHPLC-ESI-TOF-MS and UHPLC-LTQ/Orbitrap-MS/MS, indicate that the positive effects of sulfur oxyanions are primarily due to their capability to react with and sulfonate inhibitory aromatic compounds and furan aldehydes at low temperature and slightly acidic pH (such as 25°C and pH 5.5). © 2011 Wiley Periodicals, Inc.


Alriksson B.,Processum Biorefinery Initiative AB | Cavka A.,Umeå University | Jonsson L.J.,Umeå University
Bioresource Technology | Year: 2011

Inhibitory lignocellulose hydrolysates were treated with the reducing agents dithionite and sulfite to achieve improved fermentability. Addition of these reducing agents (in the concentration range 5.0-17.5mM) to enzymatic hydrolysates of spruce wood or sugarcane bagasse improved processes based on both SHF (simultaneous hydrolysis and fermentation) and SSF (simultaneous saccharification and fermentation). The approach was exemplified in ethanolic fermentations with Saccharomyces cerevisiae and by using hydrolysates with sugar concentrations >100g/L (for SHF) and with 10% dry-matter content (for SSF). In the SHF experiments, treatments with dithionite raised the ethanol productivities of the spruce hydrolysate from 0.2 to 2.5g×L -1×h -1 and of the bagasse hydrolysate from 0.9 to 3.9g×L -1×h -1, values even higher than those of fermentations with reference sugar solutions without inhibitors. Benefits of the approach include that the addition of the reducing agent can be made in-situ directly in the fermentation vessel, that the treatment can be performed at a temperature and pH suitable for fermentation, and that the treatment results in dramatically improved fermentability without degradation of fermentable sugars. The many benefits and the simplicity of the approach offer a new way to achieve more efficient manufacture of fermentation products from lignocellulose hydrolysates. © 2010 Elsevier Ltd.


Soudham V.P.,Umeå University | Alriksson B.,Processum Biorefinery Initiative AB | Jonsson L.J.,Umeå University
Journal of Biotechnology | Year: 2011

Enzymatic hydrolysis of pretreated lignocellulosic substrates has emerged as an interesting option to produce sugars that can be converted to liquid biofuels and other commodities using microbial biocatalysts. Lignocellulosic substrates are pretreated to make them more accessible to cellulolytic enzymes, but the pretreatment liquid partially inhibits subsequent enzymatic hydrolysis. The presence of pretreatment liquid from Norway spruce resulted in a 63% decrease in the enzymatic saccharification of Avicel compared to when the reaction was performed in a buffered aqueous solution. The addition of 15. mM of a reducing agent (hydrogen sulfite, dithionite, or dithiothreitol) to reaction mixtures with the pretreatment liquid resulted in up to 54% improvement of the saccharification efficiency. When the reducing agents were added to reaction mixtures without pretreatment liquid, there was a 13-39% decrease in saccharification efficiency. In the presence of pretreatment liquid, the addition of 15. mM dithionite to Avicel, α-cellulose or filter cake of pretreated spruce wood resulted in improvements between 25 and 33%. Positive effects (6-17%) of reducing agents were also observed in experiments with carboxymethyl cellulose and 2-hydroxyethyl cellulose. The approach to add reducing agents appears useful for facilitating the utilization of enzymes to convert cellulosic substrates in industrial processes. © 2011 Elsevier B.V.


Jonsson L.J.,Umeå University | Alriksson B.,Processum Biorefinery Initiative AB | Nilvebrant N.-O.,Borregaard
Biotechnology for Biofuels | Year: 2013

Bioconversion of lignocellulose by microbial fermentation is typically preceded by an acidic thermochemical pretreatment step designed to facilitate enzymatic hydrolysis of cellulose. Substances formed during the pretreatment of the lignocellulosic feedstock inhibit enzymatic hydrolysis as well as microbial fermentation steps. This review focuses on inhibitors from lignocellulosic feedstocks and how conditioning of slurries and hydrolysates can be used to alleviate inhibition problems. Novel developments in the area include chemical in-situ detoxification by using reducing agents, and methods that improve the performance of both enzymatic and microbial biocatalysts. © 2013 Jonsson et al.; licensee BioMed Central Ltd.


Svedberg A.,Processum Biorefinery Initiative AB | Lindstrom T.,Innventia Ab
Nordic Pulp and Paper Research Journal | Year: 2010

The interdependency between retention and paper formation was studied using a previously designed R-F (Retention and formation)-machine. The objective of the work was to investigate the retentionformation relationship for different types of retention aid systems. Both single-component cationic Polyacrylamides with varying molecular weights and polyacrylamide-based microparticulate retention aids were investigated on the R-F-machine, for-a fine paper stock with addition of 25% filler (based on total solids content). Results showed that the retention-formation relationship was not dependent on the retention aid systems used, since all systems provided similar relationships. In terms of the retention performance, significant differences were observed, depending on the choice of microparticle system and molecular weight of the used cationic Polyacrylamide.


Svedberg A.,Processum Biorefinery Initiative AB | Lindstrom T.,Innventia Ab
Nordic Pulp and Paper Research Journal | Year: 2010

A pilot-scale fourdrinier former has been developed for the purpose of investigating the relationship between retention and paper formation (features, retention aids, dosage points, etc.). The main objective of this publication was to present the R-F (Retention and formation)-machine and demonstrate some of its fields of applications. For a fine paper stock (90% hardwood and 10% softwood) with addition of 25% filler (based on total solids content), the relationship between retention and formation was investigated for a microparticulate retention aid (cationic Polyacrylamide together with anionic montmorillonite clay). The retention-formation relationship of the retention aid system was investigated after choosing standardized machine operating conditions (e.g. the jet-to-wire speed ratio). As expected, the formation was impaired when the retention was increased. Since good reproducibility was attained, the R-F (Retention and formation)-machine was found to be a useful tool for studying the relationship between retention and paper formation.


Svedberg A.,Processum Biorefinery Initiative AB | Lindstrom T.,Innventia Ab
Nordic Pulp and Paper Research Journal | Year: 2012

The effects of retention on formation and drainage by using three-component retention aid systems were examined using a pilot web former. The purpose was to examine whether the relationship between retention and formation could be improved by using systems based on cationic Polyacrylamide, structurally different high molecular weight anionic polymers and montmorillonite clay. The structure of the anionic polymer was varied from linear to fully crosslinked and added from a small amount up to such a level where papermaking fibres in suspension become dispersed. The pilot web former experiments were performed using an R-F (Retention and Formation)-machine employing a fine paper stock (90% hardwood and 10% softwood kraft pulp) with an addition of 25% precipitated calcium carbonate (PCC) (based on total solids content). It was found that the paper formation could be significantly improved, at a given level of retention by using a micro-particulate retention aid system (cationic Polyacrylamide and montmorillonite clay) in combination with an anionic Polyacrylamide. Most important, it was found, that with such three-component systems, the impairment of the drainage could be avoided and, hence, that the improved formation was not provided by worsened drainage on the wire section.

Loading Processum Biorefinery Initiative AB collaborators
Loading Processum Biorefinery Initiative AB collaborators