Time filter

Source Type

L'Aquila, Italy

Agency: Cordis | Branch: FP7 | Program: JTI-CP-FCH | Phase: SP1-JTI-FCH.2010.2.2;SP1-JTI-FCH.2010.2.3 | Award Amount: 4.93M | Year: 2011

Sustainable decentralized hydrogen production requires development of efficient fuel-flexible units adaptable to renewable sources. CoMETHy aims at developing a compact steam reformer to convert reformable fuels (methane, bioethanol, glycerol, etc.) to pure hydrogen, adaptable to several heat sources (solar, biomass, fossil, refuse derived fuels, etc.) depending on the locally available energy mix. The following systems and components will be developed: a structured open-celled catalyst for the low-temperature (< 550C) steam reforming processes a membrane reactor to separate hydrogen from the gas mixture the use of an intermediate low-cost and environmentally friendly liquid heat transfer fluid (molten nitrates) to supply process heat from a multi fuel system. Reducing reforming temperatures below 550C by itself will significantly reduce material costs. The process involves heat collection from several energy sources and its storage as sensible heat of a molten salts mixture at 550C. This molten salt stream provides the process heat to the steam reformer, steam generator, and other units. The choice of molten salts as heat transfer fluid allows: improved compactness of the reformer; rapid and frequent start-up operations with minor material ageing concerns; improved heat recovery capability from different external sources; coupling with intermittent renewable sources like solar in the medium-long term, using efficient heat storage to provide the renewable heat when required. Methane, either from desulfurized natural gas or biogas, will be considered as a reference feed material to be converted to hydrogen. The same system is flexible also in terms of the reformable feedstock: bioethanol and/or glycerol can be converted to hydrogen following the same reforming route. The project involves RTD activities ion the single components, followed by proof-of-concept of the integrated system at the pilot scale (2 Nm2/h of hydrogen) and cost-benefit analysis.

Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: KBBE.2013.3.4-01;KBBE.2013.3.3-04 | Award Amount: 7.86M | Year: 2013

The project GRAIL has been build with 15 partners from 9 different countries with the aim of finalising the solutions given previously to the valorization of glycerol and transform then in valuable products in a biorefinery approach The overall concept of GRAIL project is the use, exploitation and further development of the state of the art in the field of bio-based products from glycerol and the development research-driven cluster for the use of crude glycerol for the production of high-value platforms, as well as valued end products, harnessing the biotech processes. Therefore GRAIL project has a strong business focus and its ultimate goal is to set up implantation of biorefineries in close relationship with biodiesel. This projects aim is to develop a set of technologies for converting waste glycerol from biodiesel production in a biorefinery concept to end with products of high value such as 1,3 propanediol, Fatty acid glycerol formal esters, PolyHydroxyAlkanoates (PHA), Hydrogen and Ethanol, Synthetic coatings, powder coating resins, Secondary Glycerol Amine, Biobutanol, Trehalose, Cyanocobalamin (Vitamin B12), -carotene, Docosahexaenoic acid (DHA), . The GRAIL project has designed an overall strategy based on three main pillars covering all the value chain: Pillar 1: Raw materials: Evaluation of crude glycerol and purification Pillar 2: Product development: Research and development to transform crude glycerol into other high added value such as biofuels, green chemicals and food supplements Pillar 3: Industrial feasibility aspects including economic and environmental evaluation. This pillar will take the results of GRAIL from the product development to the industrial site. To carry out that the technical feasibility will be study on a pilot plant in a Demonstration (and the results will be important to evaluate the LCA and the economic feasibility (WP6).

Discover hidden collaborations