Entity

Time filter

Source Type


Dibattista J.D.,McGill University | Feldheim K.A.,Pritzker Laboratory for Molecular Systematics and Evolution | Garant D.,Universite de Sherbrooke | Hendry A.P.,McGill University
Evolutionary Applications | Year: 2011

The level of genetic variation in natural populations influences evolutionary potential, and may therefore influence responses to selection in the face of future environmental changes. By combining long-term monitoring of marked individuals with genetic pedigree reconstruction, we assessed whether habitat loss influenced genetic variation in a lemon shark (Negaprion brevirostris) population at an isolated nursery lagoon (Bimini, Bahamas). We also tracked changes in the strength and direction of natural selection. Contrary to initial expectations, we found that after the habitat loss neutral genetic variation increased, as did additive genetic variance for juvenile morphological traits (body length and mass). We hypothesize that these effects might result from philopatric behavior in females coupled with a possible influx of male genotypes from other nursery sites. We also found changes in the strength of selection on morphological traits, which weakened considerably after the disturbance; habitat loss therefore changed the phenotypes favored by natural selection. Because such human-induced shifts in the adaptive landscape may be common, we suggest that conservation biologists should not simply focus on neutral genetic variation per se, but also on assessing and preserving evolutionary parameters, such as additive genetic variation and selection. © 2010 Blackwell Publishing Ltd. Source


Feldheim K.A.,Pritzker Laboratory for Molecular Systematics and Evolution | Dibattista J.D.,King Abdullah University of Science and Technology | Kessel S.T.,Great Lakes Institute for Environmental Research | Hendry A.P.,McGill University | And 3 more authors.
Molecular Ecology | Year: 2014

Sharks are a globally threatened group of marine fishes that often breed in their natal region of origin. There has even been speculation that female sharks return to their exact birthplace to breed ('natal philopatry'), which would have important conservation implications. Genetic profiling of lemon sharks (Negaprion brevirostris) from 20 consecutive cohorts (1993-2012) at Bimini, Bahamas, showed that certain females faithfully gave birth at this site for nearly two decades. At least six females born in the 1993-1997 cohorts returned to give birth 14-17 years later, providing the first direct evidence of natal philopatry in the chondrichthyans. Long-term fidelity to specific nursery sites coupled with natal philopatry highlights the merits of emerging spatial and local conservation efforts for these threatened predators. © 2013 John Wiley & Sons Ltd. Source


Ribeiro A.M.,University of California at Berkeley | Ribeiro A.M.,University of Cape Town | Lloyd P.,University of Cape Town | Feldheim K.A.,Pritzker Laboratory for Molecular Systematics and Evolution | And 2 more authors.
Molecular Ecology | Year: 2012

Dispersal can be motivated by multiple factors including sociality. Dispersal behaviour affects population genetic structure that in turn reinforces social organization. We combined observational information with individual-based genetic data in the Karoo scrub-robin, a facultative cooperatively breeding bird, to understand how social bonds within familial groups affect mating patterns, cause sex asymmetry in dispersal behaviour and ultimately influence the evolution of dispersal. Our results revealed that males and females do not have symmetrical roles in structuring the population. Males are extremely philopatric and tend to delay dispersal until they gain a breeding position within a radius of two territories around the natal site. By contrast, females dispersed over larger distances, as soon as they reach independence. This resulted in male neighbourhoods characterized by high genetic relatedness. The long-distance dispersal strategy of females ensured that Karoo scrub-robins do not pair with relatives thereby compensating for male philopatry caused by cooperation. The observed female-biased strategy seems to be the most prominent mechanism to reduce the risk of inbreeding that characterizes social breeding system. This study demonstrates that tying together ecological data, such as breeding status, determining social relationships with genetic data, such as kinship, provides valuable insights into the proximate causes of dispersal, which are central to any evolutionary interpretation. © 2011 Blackwell Publishing Ltd. Source


Chapman D.D.,Marine Conservation Institute | Feldheim K.A.,Pritzker Laboratory for Molecular Systematics and Evolution | Papastamatiou Y.P.,University of St. Andrews | Hueter R.E.,Center for Shark Research
Annual Review of Marine Science | Year: 2015

The overexploitation of sharks has become a global environmental issue in need of a comprehensive and multifaceted management response. Tracking studies are beginning to elucidate how shark movements shape the internal dynamics and structure of populations, which determine the most appropriate scale of these management efforts. Tracked sharks frequently either remain in a restricted geographic area for an extended period of time (residency) or return to a previously resided-in area after making long-distance movements (site fidelity). Genetic studies have shown that some individuals of certain species preferentially return to their exact birthplaces (natal philopatry) or birth regions (regional philopatry) for either parturition or mating, even though they make long-distance movements that would allow them to breed elsewhere. More than 80 peer-reviewed articles, constituting the majority of published shark tracking and population genetic studies, provide evidence of at least one of these behaviors in a combined 31 shark species from six of the eight extant orders. Residency, site fidelity, and philopatry can alone or in combination structure many coastal shark populations on finer geographic scales than expected based on their potential for dispersal. This information should therefore be used to scale and inform assessment, management, and conservation activities intended to restore depleted shark populations. Copyright © 2015 by Annual Reviews. All rights reserved. Source


Chaves-Fonnegra A.,Nova Southeastern University | Feldheim K.A.,Pritzker Laboratory for Molecular Systematics and Evolution | Secord J.,Nova Southeastern University | Lopez J.V.,Nova Southeastern University
Molecular Ecology | Year: 2015

Some excavating sponges of the genus Cliona compete with live reef corals, often killing and bioeroding entire colonies. Important aspects affecting distribution of these species, such as dispersal capability and population structure, remain largely unknown. Thus, the aim of this study was to determine levels of genetic connectivity and dispersal of Cliona delitrix across the Greater Caribbean (Caribbean Sea, Bahamas and Florida), to understand current patterns and possible future trends in their distribution and effects on coral reefs. Using ten species-specific microsatellite markers, we found high levels of genetic differentiation between six genetically distinct populations: one in the Atlantic (Florida-Bahamas), one specific to Florida and four in the South Caribbean Sea. In Florida, two independent breeding populations are likely separated by depth. Gene flow and ecological dispersal occur among other populations in the Florida reef tract, and between some Florida locations and the Bahamas. Similarly, gene flow occurs between populations in the South Caribbean Sea, but appears restricted between the Caribbean Sea and the Atlantic (Florida-Bahamas). Dispersal of C. delitrix was farther than expected for a marine sponge and favoured in areas where currents are strong enough to transport sponge eggs or larvae over longer distances. Our results support the influence of ocean current patterns on genetic connectivity, and constitute a baseline to monitor future C. delitrix trends under climate change. © 2015 John Wiley & Sons Ltd. Source

Discover hidden collaborations