Princeton, NJ, United States
Princeton, NJ, United States

Princeton University is a private Ivy League research university in Princeton, New Jersey. Founded in 1746 in Elizabeth as the College of New Jersey, Princeton was the fourth chartered institution of higher education in the American colonies and thus one of the nine Colonial Colleges established before the American Revolution. The institution moved to Newark in 1747, then to the current site nine years later, where it was renamed Princeton University in 1896. The present-day College of New Jersey in nearby Ewing Township, New Jersey, is an unrelated institution. Princeton had close ties to the Presbyterian Church, but has never been affiliated with any denomination and today imposes no religious requirements on its students.Princeton provides undergraduate and graduate instruction in the humanities, social science, natural science, and engineering. It offers professional degrees through the Woodrow Wilson School of Public and International Affairs, the School of Engineering and Applied Science, the School of Architecture and the Bendheim Center for Finance. The University has tied with the Institute for Advanced Study, Princeton Theological Seminary, and the Westminster Choir College of Rider University. By endowment per student, Princeton is the wealthiest school in the United States.Princeton has been associated with 37 Nobel laureates, 17 National Medal of Science winners, two Abel Prize winners, eight Fields Medalists , nine Turing Award laureates, three National Humanities Medal recipients and 204 Rhodes Scholars. Wikipedia.

Time filter

Source Type

The invention relates to a method of depositing an organic material, whereina carrier gas carrying an organic material is ejecting from the nozzle at a flow velocity that is at least 10 % of the thermal velocity of the carrier gas, such that the organic material is deposited onto a substrate, and wherein a guard flow is provided around the carrier gas.

Princeton University | Date: 2017-01-18

The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photovoltaic devices, e.g., organic solar cells. Further, it is directed to an optimized organic solar cell comprising multiple stacked subcells in series. High power conversion efficiency are achieved by fabrication of a photovoltaic cell comprising multiple stacked subcells with thickness optimization and employing an electron blocking layer.

Princeton University and Hopkins Inc. | Date: 2017-01-18

The present invention relates to granular composite density enhancement, and related methods and compositions. The applications where these properties are valuable include but are not limited to: 1) additive manufacturing (3D printing) involving metallic, ceramic, cermet, polymer, plastic, or other dry or solvent-suspended powders or gels, 2) concrete materials, 3) solid propellant materials, 4) cermet materials, 5) granular armors, 6) glass-metal and glass-plastic mixtures, and 7) ceramics comprising (or manufactured using) granular composites.

Princeton University | Date: 2017-02-08

Methods described herein enable the production of numerous molecular species through decarboxylative cross-coupling via use of photoredox and transition metal catalysts. For example, methods described herein enable the production of numerous molecular species through decarboxylative cross-coupling via use of photoredox and transition metal catalysts. A method described herein, in some embodiments, comprises providing a reaction mixture including a photoredox catalyst, a transition metal catalyst, a coupling partner and a substrate having a carboxyl group. The reaction mixture is irradiated with a radiation source resulting in cross-coupling of the substrate and coupling partner via a mechanism including decarboxylation, wherein the coupling partner is selected from the group consisting of a substituted aromatic compound and a substituted aliphatic compound.

University of Virginia and Princeton University | Date: 2017-02-14

Embodiments of the present disclosure provide for methods of hydrocarbon functionalization, methods and systems for converting a hydrocarbon into a compound including at least one group ((e.g., hydroxyl group) (e.g., methane to methanol)), functionalized hydrocarbons, and the like.

Passive components adapted for integration with at least one active semiconductor device, in an embodiment, comprise at least one metallic structure dimensioned and arranged to absorb and/or reflect a major fraction of incident electromagnetic radiation received at one or more wavelengths of a first group of wavelengths. This prevents radiation within the first group of wavelengths from being received and/or processed by the at least one active device. In an embodiment, one or more metallic structures are dimensioned and arranged to direct an amount of incident radiation, received at one or more wavelengths of a second group of wavelengths, sufficient to enable receiving or processing of incident radiation within the second group of wavelengths by the at least one active semiconductor device. In some embodiments, the passive component comprises a passive optical filter for use in spectroscopic applications, and the active semiconductor device is a detector or sensor.

Hasan M.Z.,Princeton University | Kane C.L.,University of Pennsylvania
Reviews of Modern Physics | Year: 2010

Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. These states are possible due to the combination of spin-orbit interactions and time-reversal symmetry. The two-dimensional (2D) topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A three-dimensional (3D) topological insulator supports novel spin-polarized 2D Dirac fermions on its surface. In this Colloquium the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topological insulators have been observed. Transport experiments on HgTe/CdTe quantum wells are described that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. Experiments on Bi1_xSbx, Bi2Se3, Bi2Te3, and Sb2Te3 are then discussed that establish these materials as 3D topological insulators and directly probe the topology of their surface states. Exotic states are described that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions and may provide a new venue for realizing proposals for topological quantum computation. Prospects for observing these exotic states are also discussed, as well as other potential device applications of topological insulators. © 2010 The American Physical Society.

Burrows A.,Princeton University
Reviews of Modern Physics | Year: 2013

Core-collapse theory brings together many facets of high-energy and nuclear astrophysics and the numerical arts to present theorists with one of the most important, yet frustrating, astronomical questions: "What is the mechanism of core-collapse supernova explosions?" A review of all the physics and the 50-year history involved would soon bury the reader in minutiae that could easily obscure the essential elements of the phenomenon, as we understand it today. Moreover, much remains to be discovered and explained, and a complicated review of an unresolved subject in flux could grow stale fast. Therefore, this paper describes various important facts and perspectives that may have escaped the attention of those interested in this puzzle. Furthermore, an attempt to describe the modern theory's physical underpinnings and a brief summary of the current state of play are given. In the process, a few myths that have crept into modern discourse are identified. However, there is much more to do and humility in the face of this age-old challenge is clearly the most prudent stance as its eventual resolution is sought. © 2013 American Physical Society.

Drozdov I.K.,Princeton University
Nature Physics | Year: 2014

The hallmark of a topologically insulating state of matter in two dimensions protected by time-reversal symmetry is the existence of chiral edge modes propagating along the perimeter of the sample. Among the first systems predicted to be a two-dimensional topological insulator are bilayers of bismuth. Here we report scanning tunnelling microscopy experiments on bulk Bi crystals that show that a subset of the predicted Bi-bilayers' edge states are decoupled from the states of the substrate and provide direct spectroscopic evidence of their one-dimensional nature. Moreover, by visualizing the quantum interference of edge-mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties consistent with strong suppression of backscattering as predicted for the propagating topological edge states.

Harlow D.,Princeton University
Reviews of Modern Physics | Year: 2016

These lectures give an introduction to the quantum physics of black holes, including recent developments based on quantum information theory such as the firewall paradox and its various cousins. An introduction is also given to holography and the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, focusing on those aspects which are relevant for the black hole information problem. © 2016 American Physical Society.

Loading Princeton University collaborators
Loading Princeton University collaborators