Time filter

Source Type

Amman, Jordan

Princess Sumaya University for Technology , established in 1991, is a specialized, Non-governmental, Non-profit, Jordanian university, owned by the leading applied research centre in Jordan, the Royal Scientific Society . PSUT’s area of specialization is IT, Communications and Electronics. As a nonprofit institution, PSUT embraces both the public and private sectors, but while akin to public universities in its mission, it is more aligned to the private sector in drive and spirit.PSUT is located in Amman, Jordan, offering an array of ICT related courses. It currently offers B.Sc. degrees in Computer Science, Computer Graphics and Animation, Software Engineering, Electronics Engineering, Computer Engineering, Communication Engineering, Energy and Electrical Power Engineering, Management Information Systems, Administration of business and Accounting.The university campus underwent major renovation and expansion in late 2004. Labs were upgraded with new equipment and computers. The university library got expanded, and a new collection of IT related books was added.The university has a Sun Microsystems lab, mainly used in Java courses, and Unix courses on Sun SPARC based machines.Also, PSUT has a Rubicon Lab, This Lab used for teaching animation and video game development courses, this lab was established by partnership with Rubicon Group Holding Company for the animation industry and video games.An Oracle incubator lab was also recently established in the campus, with the goal of familiarizing students with Oracle technologies, and remove the stereo-typical view of Oracle as only being a Database company.PSUT has recently established a regional enterepreneurship center, named: Queen Rania Center for Entrepreneurship, to help in fostering talent and transforming knowledge in Jordan and the region into a socio-economic impact. Wikipedia.

Al-Haj A.,Princess Sumaya University for Technology
Tijdschrift voor Urologie

In this paper, we propose a semi-blind, imperceptible, and robust digital audio watermarking algorithm. The proposed algorithm is based on cascading two well-known transforms: the discrete wavelet transform and the singular value decomposition. The two transforms provide different, but complementary, levels of robustness against watermarking attacks. The uniqueness of the proposed algorithm is twofold: the distributed formation of the wavelet coefficient matrix and the selection of the off-diagonal positions of the singular value matrix for embedding watermark bits. Imperceptibility, robustness, and high data payload of the proposed algorithm are demonstrated using different musical clips. © 2014, Al-Haj; licensee Springer. Source

Mohammad A.A.,Princess Sumaya University for Technology
Multimedia Tools and Applications

In this paper, we present a new digital watermarking scheme for ownership protection. The algorithm embeds the watermark in the Schur decomposition components of the cover image. We also show that this algorithm is noninvertible. Comparisons with other algorithms indicate that the proposed algorithm is robust against most common attacks including geometrical distortions and jpeg compression attacks. Simulations show that the performance of this algorithm outperforms the closely related singular value decomposition based algorithms. More specifically, the proposed algorithm is more robust and requires less number of computations. In addition, our algorithm does not suffer the false positive detection problem inherent in SVD based algorithms. © Springer Science+Business Media, LLC 2011. Source

Hasan O.M.,Princess Sumaya University for Technology
Journal of Modern Optics

In this paper, the bit error rate (BER), outage probability, and outage rate analysis of the heterodyne differential phase-shift keying system over double Weibull-distributed free-space optical channel (FSO) are proposed. The channel statistics are modeled based on the scintillation theory and derived as the product of two independent Weibull random variables. Novel closed-form expressions for evaluating BER, outage probability, and outage rate are derived taking into account the effect of turbulence strength and inner-scale turbulent cell size. Numerical results are provided to evaluate the FSO system performance for weak to strong turbulence channel conditions and inner-scale turbulent cell size. The BER, outage probability, and outage rate performance are displayed for different values of turbulence strength conditions, inner-scale values and signal-to-noise ratios. © 2015 Taylor & Francis. Source

Al-Haj A.,Princess Sumaya University for Technology
Multimedia Tools and Applications

In this paper, a non-blind digital audio watermarking algorithm that satisfies the minimum requirements of optimal audio watermarking set by the International Federation of Photographic Industry (IFPI), is proposed. The algorithm does not degrade perception of audio, offers an SNR value of more than 44 dB, offers around 1387 bps data payload, and it is robust against common audio processing operations such as Gaussian noise addition, MP3 compression, re-quantization, re-sampling, echo, low-pass, high-pass, and band-pass filtering. The IFPI requirements were met by the proposed algorithm as it exploits the attractive properties of two powerful mathematical transforms; the Discrete Wavelet Transform (DWT), and the Singular Value Decomposition (SVD). DWT is applied to achieve robustness as it decomposes the original audio signal in such a way to scatter watermark bits throughout the signal. SVD provides imperceptibility to the proposed algorithm by embedding watermark bits onto the diagonal singular values of the S matrix produced by SVD. The effectiveness of the algorithm is demonstrated by a set of experiments using pop, instrumental, and speech audio scripts. © 2013, Springer Science+Business Media New York. Source

Tedmori S.,Princess Sumaya University for Technology | Al-Najdawi N.,Al - Balqa Applied University
Information Sciences

Lossless encryption methods are more applicable than lossy encryption methods when marginal distortion is not tolerable. In this research, the authors propose a novel lossless symmetric key encryption/decryption technique. In the proposed algorithm, the image is transformed into the frequency domain using the Haar wavelet transform, then the image sub-bands are encrypted in a such way that guarantees a secure, reliable, and an unbreakable form. The encryption involves scattering the distinguishable frequency data in the image using a reversible weighting factor amongst the rest of the frequencies. The algorithm is designed to shuffle and reverse the sign of each frequency in the transformed image before the image frequencies are transformed back to the pixel domain. The results show a total deviation in pixel values between the original and encrypted image. The decryption algorithm reverses the encryption process and restores the image to its original form. The proposed algorithm is evaluated using standard security and statistical methods; results show that the proposed work is resistant to most known attacks and more secure than other algorithms in the cryptography domain. © 2014 Elsevier Inc. All rights reserved. Source

Discover hidden collaborations