Time filter

Source Type

Qiao J.X.,P.O. Box 4000 | Wang T.C.,P.O. Box 4000 | Adam L.P.,Discovery Biology | Chen A.Y.A.,Discovery Biology | And 29 more authors.
Journal of Medicinal Chemistry | Year: 2015

Cholesteryl ester transfer protein (CETP) inhibitors raise HDL-C in animals and humans and may be antiatherosclerotic by enhancing reverse cholesterol transport (RCT). In this article, we describe the lead optimization efforts resulting in the discovery of a series of triphenylethanamine (TPE) ureas and amides as potent and orally available CETP inhibitors. Compound 10g is a potent CETP inhibitor that maximally inhibited cholesteryl ester (CE) transfer activity at an oral dose of 1 mg/kg in human CETP/apoB-100 dual transgenic mice and increased HDL cholesterol content and size comparable to torcetrapib (1) in moderately-fat fed hamsters. In contrast to the off-target liabilities with 1, no blood pressure increase was observed with 10g in rat telemetry studies and no increase of aldosterone synthase (CYP11B2) was detected in H295R cells. On the basis of its preclinical profile, compound 10g was advanced into preclinical safety studies. © 2015 American Chemical Society. Source

Li J.,Metabolic Diseases Chemistry | Kennedy L.J.,Metabolic Diseases Chemistry | Shi Y.,Metabolic Diseases Chemistry | Tao S.,Metabolic Diseases Chemistry | And 43 more authors.
Journal of Medicinal Chemistry | Year: 2010

An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) α agonist, with an EC50 of 10 nM for human PPARα and -410-fold selectivity vs human PPAR- in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR-. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPARα ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPARα in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed. © 2010 American Chemical Society. Source

Discover hidden collaborations