Durham, NC, United States

Precision Biosciences, Inc.

www.precisionbioscience.com
Durham, NC, United States
SEARCH FILTERS
Time filter
Source Type

Patent
Precision Biosciences, Inc. | Date: 2017-08-30

Methods of cleaving double-stranded DNA that can be recognized and cleaved by a rationally-designed, I-Crel-derived meganuclease are provided. Also provided are recombinant nucleic acids, cells, and organisms containing such recombinant nucleic acids, as well as cells and organisms produced using such meganucleases. Also provided are methods of conducting a custom-designed, I-Crel-derived meganuclease business.


Patent
Precision Biosciences, Inc. | Date: 2017-01-18

The invention relates to the field of molecular biology and recombinant nucleic acid technology. In particular, the invention relates to methods of treating patients with Duchenne Muscular Dystrophy comprising the removal of at least one exon from the dystrophin gene using engineered nucleases to restore the normal reading frame. Further disclosed are engineered nucleases suitable for using the methods.


Patent
Precision Biosciences, Inc. | Date: 2015-03-12

The invention relates to the field of molecular biology and recombinant nucleic acid technology. In particular, the invention relates to methods of treating patients with Duchenne Muscular Dystrophy comprising the removal of at least one exon from the dystrophin gene using engineered nucleases to restore the normal reading frame. Further disclosed are engineered nucleases suitable for using the methods.


Disclosed are rationally-designed, non-naturally-occurring meganucleases in which a pair of enzyme subunits having specificity for different recognition sequence half-sites are joined into a single polypeptide to form a functional heterodimer with a non- palindromic recognition sequence. The invention also relates to methods of producing such meganucleases, and methods of producing recombinant nucleic acids and organisms using such meganucleases.


Disclosed are rationally-designed, non-naturally-occurring meganucleases in which a pair of enzyme subunits having specificity for different recognition sequence half-sites are joined into a single polypeptide to form a functional heterodimer with a non-palindromic recognition sequence. The invention also relates to methods of producing such meganucleases, and methods of producing recombinant nucleic acids and organisms using such meganucleases.


Disclosed are rationally-designed, non-naturally-occurring meganucleases in which a pair of enzyme subunits having specificity for different recognition sequence half-sites are joined into a single polypeptide to form a functional heterodimer with a non-palindromic recognition sequence. The invention also relates to methods of producing such meganucleases, and methods of producing recombinant nucleic acids and organisms using such meganucleases.


Methods of inserting genes into defined locations in the chromosomal DNA of cultured mammalian cell lines which are subject to gene amplification are disclosed. In particular, sequences of interest (e.g., genes encoding biotherapeutic proteins) are inserted proximal to selectable genes in amplifiable loci, and the transformed cells are subjected to selection to induce co-amplification of the selectable gene and the sequence of interest. The invention also relates to meganucleases, vectors and engineered cell lines necessary for performing the methods, to cell lines resulting from the application of the methods, and use of the cell lines to produce protein products of interest.


Disclosed are rationally-designed, non-naturally-occurring meganucleases in which a pair of enzyme subunits having specificity for different recognition sequence half-sites are joined into a single polypeptide to form a functional heterodimer with a non-palindromic recognition sequence. The invention also relates to methods of producing such meganucleases, and methods of producing recombinant nucleic acids and organisms using such meganucleases.


Disclosed are rationally-designed, non-naturally-occurring meganucleases in which a pair of enzyme subunits having specificity for different recognition sequence half-sites are joined into a single polypeptide to form a functional heterodimer with a non-palindromic recognition sequence. The invention also relates to methods of producing such meganucleases, and methods of producing recombinant nucleic acids and organisms using such meganucleases.


Patent
Precision Biosciences, Inc. | Date: 2014-06-26

Methods of cleaving double-stranded DNA that can be recognized and cleaved by a rationally-designed, I-CreI-derived meganuclease are provided. Also provided are recombinant nucleic acids, cells, and organisms containing such recombinant nucleic acids, as well as cells and organisms produced using such meganucleases. Also provided are methods of conducting a custom-designed, I-CreI-derived meganuclease business.

Loading Precision Biosciences, Inc. collaborators
Loading Precision Biosciences, Inc. collaborators