Time filter

Source Type

Bornholdt D.,University of Marburg | Atkinson T.P.,Childrens Hospital | Bouadjar B.,CHU of Bab El Oued | Catteau B.,Service de Dermatologie et de Pediatrie | And 20 more authors.
Human Mutation | Year: 2013

Missense mutations affecting membrane-bound transcription factor protease site 2 (MBTPS2) have been associated with Ichthyosis Follicularis with Atrichia and Photophobia (IFAP) syndrome with or without BRESHECK syndrome, with keratosis follicularis spinulosa decalvans, and Olmsted syndrome. This metalloprotease activates, by intramembranous trimming in conjunction with the protease MBTPS1, regulatory factors involved in sterol control of transcription and in cellular stress response. In this study, 11 different MBTPS2 missense mutations detected in patients from 13 unrelated families were correlated with the clinical phenotype, with their effect on cellular growth in media without lipids, and their potential role for sterol control of transcription. Seven variants were novel [c.774C>G (p.I258M); c.758G>C (p.G253A); c.686T>C (p.F229S); c.1427T>C (p.L476S); c.1430A>T (p.D477V); c.1499G>A (p.G500D); c.1538T>C (p.L513P)], four had previously been reported in unrelated sibships [c.261G>A (p.M87I); c.1286G>A (p.R429H); c.1424T>C (p.F475S); c.1523A>G (p.N508S)]. In the enzyme, the mutations cluster in transmembrane domains. Amino-acid exchanges near the active site are more detrimental to functionality of the enzyme and, clinically, associated with more severe phenotypes. In male patients, a genotype-phenotype correlation begins to emerge, linking the site of the mutation in MBTPS2 with the clinical outcome described as IFAP syndrome with or without BRESHECK syndrome, keratosis follicularis spinulosa decalvans, X-linked, Olmsted syndrome, or possibly further X-linked traits with an oculocutaneous component. Missense mutations affecting membrane-bound transcription factor protease site 2 (MBTPS2) cluster in transmembrane domains. Amino-acid exchanges near the active site are more detrimental to functionality of the enzyme and, clinically, associated with more severe phenotypes. In male patients, a genotype-phenotype correlation begins to emerge, linking the site of the mutation in MBTPS2 with the clinical outcome described as IFAP syndrome with or without BRESHECK syndrome, keratosis follicularis spinulosa decalvans, X-linked, or the X-linked form of Olmsted Syndrome. © 2013 Wiley Periodicals, Inc.


Haase M.,Heinrich Heine University Düsseldorf | Anlauf M.,Heinrich Heine University Düsseldorf | Schott M.,Heinrich Heine University Düsseldorf | Schinner S.,Heinrich Heine University Düsseldorf | And 3 more authors.
Endocrine | Year: 2011

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant tumor syndrome that may be caused by mutations in the MEN1 gene on 11q13. Loss of function of the tumor suppressor gene MEN1 leads to synchronous or metachronous appearance of neuroendocrine tumors arising from neuroendocrine cells of the parathyroid and pituitary glands, the duodenum and pancreatic islets, and other endocrine organs such as the adrenal cortex. We here present a patient with MEN1 who developed hyperparathyroidism, multiple well differentiated functionally inactive neuroendocrine tumors of the pancreas and an adrenal carcinoma. We describe a new mutation at codon 443 in the coding region of exon 9 in the MEN1 gene, where a cytosine residue was exchanged for adenosine (TCC > TAC) and, consequently, serine for tyrosine (p.Ser443Tyr; c.1327C > A). Also, we provide clinical data that may add to the genotype-phenotype discussion. We conclude that the novel mutation in the MEN1 gene described herein was clinically relevant. © 2010 Springer Science+Business Media, LLC.

Loading Praxis fur Humangenetik Altona collaborators
Loading Praxis fur Humangenetik Altona collaborators