Entity

Time filter

Source Type

SANTA BARBARA, CA, United States

Grulkowski I.,Massachusetts Institute of Technology | Liu J.J.,Massachusetts Institute of Technology | Potsaid B.,Massachusetts Institute of Technology | Potsaid B.,Thorlabs Inc | And 4 more authors.
Optics Letters | Year: 2013

We demonstrate ultralong-range swept-source optical coherence tomography (OCT) imaging using vertical cavity surface emitting laser technology. The ability to adjust laser parameters and high-speed acquisition enables imaging ranges from a few centimeters up to meters using the same instrument. We discuss the challenges of long-range OCT imaging. In vivo human-eye imaging and optical component characterization are presented. The precision and accuracy of OCT-based measurements are assessed and are important for ocular biometry and reproducible intraocular distance measurement before cataract surgery. Additionally, meter-range measurement of fiber length and multicentimeter-range imaging are reported. 3D visualization supports a class of industrial imaging applications of OCT. © 2013 Optical Society of America. Source


Grant
Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 1.50M | Year: 2005

DESCRIPTION (provided by applicant): Quantitative near infrared tissue spectroscopy in the 650-1000nm wavelength range is a sensitive non-invasive tool for measuring tissue optical properties, and correlating them with tissue components such as water, lipids, oxy-hemoglobin, and deoxy-hemoglobin. In particular, the use of both frequency domain and steady state broadband measurements offers considerable promise in the detection, characterization, and therapeutic monitoring of breast cancer. Currently, however, obtaining accurate spectral information requires multiple discrete diode lasers and a white light source for measurements at a single source and detector position. This requires a complex and power consumptive system, with increasing complexity for multi-point measurements of spatial variation. This research seeks to create a single-chip multi-wavelength source that can replace both discrete diode lasers and white light sources. The proposed source employs wafer bonding technology to create monolithic 16-channel multi-wavelength arrays. In conjunction with temperature tuning, this source can cover the entire 650-1000nm spectrum, and be used for both frequency domain and steady state measurements. Phase ! will demonstrate feasibility with a 4 channel array. Phase II will extend to complete wavelength coverage, optimize power, and incorporate the new source into a functional spectroscopic probe which will be evaluated in tissue phantoms, animal models, and human subjects.


Patent
Praevium Research, Inc. and Thorlabs Inc. | Date: 2013-07-26

An agile optical imaging system for optical coherence tomography imaging using a tunable source comprising a wavelength tunable VCL laser is disclosed. The tunable source has long coherence length and is capable of high sweep repetition rate, as well as changing the sweep trajectory, sweep speed, sweep repetition rate, sweep linearity, and emission wavelength range on the fly to support multiple modes of OCT imaging. The imaging system also offers new enhanced dynamic range imaging capability for accommodating bright reflections. Multiscale imaging capability allows measurement over orders of magnitude dimensional scales. The imaging system and methods for generating the waveforms to drive the tunable laser in flexible and agile modes of operation are also described.


Patent
Thorlabs Inc. and Praevium Research, Inc. | Date: 2014-03-14

A system for swept source optical coherence tomography, the system including a light source emitting multiplexed wavelength-swept radiation over a total wavelength range, the light source including N wavelength-swept vertical cavity lasers (VCL) emitting N tunable VCL outputs having N wavelength trajectories, a combiner for combining the N tunable VCL optical outputs into a common optical path to create the multiplexed wavelength-swept radiation, a splitter for splitting the multiplexed wavelength-swept radiation to a sample and a reference path, an optical detector for detecting an interference signal created by an optical interference between a reflection from the sample and light traversing the reference path, and a signal processing system which uses the interference signal to construct an image of the sample, wherein at least one of the N wavelength trajectories differs from another of the N wavelength trajectories with respect to at least one parameter.


Patent
Thorlabs Inc. and Praevium Research, Inc. | Date: 2014-03-14

A high-speed, single-mode, high power, reliable and manufacturable wavelength-tunable light source operative to emit wavelength tunable radiation over a wavelength range contained in a wavelength span between about 950 nm and about 1150 nm, including a vertical cavity laser (VCL), the VCL having a gain region with at least one compressively strained quantum well containing Indium, Gallium, and Arsenic.

Discover hidden collaborations