Poznan University of Medical Sciences

www.ump.edu.pl
Poznan, Poland

Poznan University of Medical science is a prominent Polish medical university, located in the city of Poznań in western Poland. It traces its beginnings to the foundation of Poznań University in 1919, and was formed as a separate institution in 1950. It gained the status of uniwersytet in 2007. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
University of Michigan and Poznan University of Medical Sciences | Date: 2016-10-21

Components, for example, nanoparticles for detecting and/or treating one or more active carious lesions or microcavities in teeth of a subject are provided. The component or nanoparticle may comprise a biocompatible and biodegradable polymer (e.g., a starch) bearing at least one cationic region and/or having a net positive charge and thereby capable of associating with one or more active and/or early carious lesions on a tooth in an oral cavity of a subject. The components or nanoparticles are optionally water soluble or dispersible. The components or nanoparticle also comprises an imaging agent (e.g., a fluorophore or dye) bonded to the biocompatible and biodegradable polymer. The component or nanoparticle is thus capable of indicating the presence of one or more active carious lesions when the component or nanoparticle is associated therewith. Oral care compositions comprising such compounds/nanoparticles and methods of making and using the same are also provided.


Leppert W.,Poznan University of Medical Sciences
Pharmacological Reports | Year: 2010

Oxycodone is a valued opioid analgesic, which may be administered either as the first strong opioid or when other strong opioids are ineffective. In case of insufficient analgesia and/or intense adverse effects such as sedation, hallucinations and nausea/vomiting a switch from another opioid to oxycodone might be beneficial. Oxycodone is administered to opioid-naive patients with severe pain and to patients who were unsuccessfully treated with weak opioids, namely tramadol, codeine and dihydrocodeine. Oxycodone effective analgesia may be attributed to its affinity to μ and possibly κ opioid receptors, rapid penetration through the blood-brain barrier and higher concentrations in brain than in plasma. Oxycodone displays high bioavailability after oral administration and may be better than morphine in patients with renal impairment due to the decreased production of active metabolites. Recently an oral controlled-release oxycodone formulation was introduced in Poland. Another new product that was launched recently is a combination of prolonged-release oxycodone with prolonged-release naloxone (oxycodone/naloxone tablets). The aim of this review is to outline the pharmacodynamic and pharmacokinetic properties, drug interactions, dosing rules, adverse effects, equianalgesic dose ratio with other opioids and clinical studies of oxycodone in patients with cancer pain. The potential role of oxycodone/naloxone in chronic pain management and its impact on the bowel function is also discussed. © 2010 by institute of pharmacology polish academey of sciences.


Leppert W.,Poznan University of Medical Sciences
Drug Design, Development and Therapy | Year: 2015

Opioid-induced bowel dysfunction (OIBD) comprises gastrointestinal (GI) symptoms, including dry mouth, nausea, vomiting, gastric stasis, bloating, abdominal pain, and opioid-induced constipation, which significantly impair patients’ quality of life and may lead to undertreatment of pain. Traditional laxatives are often prescribed for OIBD symptoms, although they display limited efficacy and exert adverse effects. Other strategies include prokinetics and change of opioids or their administration route. However, these approaches do not address underlying causes of OIBD associated with opioid effects on mostly peripheral opioid receptors located in the GI tract. Targeted management of OIBD comprises purely peripherally acting opioid receptor antagonists and a combination of opioid receptor agonist and antagonist. Methylnaltrexone induces laxation in 50%–60% of patients with advanced diseases and OIBD who do not respond to traditional oral laxatives without inducing opioid withdrawal symptoms with similar response (45%–50%) after an oral administration of naloxegol. A combination of prolonged-release oxycodone with prolonged-release naloxone (OXN) in one tablet (a ratio of 2:1) provides analgesia with limited negative effect on the bowel function, as oxycodone displays high oral bioavailability and naloxone demonstrates local antagonist effect on opioid receptors in the GI tract and is totally inactivated in the liver. OXN in daily doses of up to 80 mg/40 mg provides equally effective analgesia with improved bowel function compared to oxycodone administered alone in patients with chronic non-malignant and cancer-related pain. OIBD is a common complication of long-term opioid therapy and may lead to quality of life deterioration and undertreatment of pain. Thus, a complex assessment and management that addresses underlying causes and patomechanisms of OIBD is recommended. Newer strategies comprise methylnaltrexone or OXN administration in the management of OIBD, and OXN may be also considered as a preventive measure of OIBD development in patients who require opioid administration. © 2015 Leppert.


Leppert W.,Poznan University of Medical Sciences
Pharmacology | Year: 2011

In most cancer patients, pain is successfully treated with pharmacological measures using opioid analgesics for moderate to severe pain (strong opioids) alone or in combination with adjuvant analgesics (coanalgesics). Opioids for mild to moderate pain (weak opioids) are usually recommended in the treatment of cancer pain of mild to moderate intensity. There is a debate whether the second step of the WHO analgesic ladder comprising weak opioids such as tramadol, codeine and dihydrocodeine is still needed for the treatment of cancer and chronic pain since low doses of strong opioids show similar efficacy. However, many patients with mild, moderate and in some cases strong pain intensity are still successfully treated with weak opioids. All these drugs are metabolized through CYP2D6, an important enzyme for approximately 25% of all drugs administered in clinical practice. The aim of this review is to summarize data on the impact of CYP2D6 polymorphism on pharmacokinetics, pharmacodynamics and adverse effects of weak opioids. Copyright © 2011 S. Karger AG, Basel.


Leppert W.,Poznan University of Medical Sciences
Cancer Management and Research | Year: 2010

Fentanyl is a strong opioid analgesic, which is commonly used in the form of a transdermal patch for the treatment of chronic cancer pain. An intranasal route of fentanyl administration is a novel treatment for breakthrough cancer pain (BTCP). The prevalence, assessment, and management of BTCP is outlined in this paper, and basic pharmacodynamic and pharmacokinetic properties, dosing guidelines, and clinical experience with the use of intranasal fentanyl in this indication are discussed. Intranasal fentanyl is an attractive and convenient mode of BTCP treatment in opioid-tolerant patients due to its quick onset and short duration of action, noninvasive administration route, high bioavailability, and avoidance of a hepatic first-pass effect. Until now, few clinical trials have been conducted with intranasal fentanyl, but all have confirmed its usefulness and acceptability in BTCP treatment. Intranasal fentanyl may be used in opioid-tolerant patients without nasal pathologies. The dose should be titrated in each patient regardless of the regular opioid dose administered. Future studies should compare intranasal fentanyl with other fentanyl formulations used for BTCP management, and with analgesia, adverse effects, and quality of life taken into consideration. © 2010 Leppert.


Ksiaz;ek K.,Poznan University of Medical Sciences
Ageing Research Reviews | Year: 2013

Human peritoneal mesothelial cells (HPMCs) dominate within the peritoneal cavity and thus play a central role in a variety of intraperitoneal processes, including the transport of water and solutes, inflammation, host response, angiogenesis, and extracellular matrix remodeling. In addition, they contribute to the development of abdominal adhesions, peritonitis, endometriosis, cancer cell metastases, and peritoneal dialysis complications. For less than a decade the primary cultures of omental HPMCs have also been used as an experimental tool in studies on cellular aging. This paper provides the first comprehensive overview of the current state of art on molecular mechanisms underlying HPMC senescence in vitro. Special attention is paid to the causes of the very fast dynamics of HPMC senescence, and in particular to the role of non-telomeric DNA damage, the autocrine activity of TGF-β1, and the causative effects of oxidative stress. In addition, some clinical manifestations of HPMC senescence will be discussed, including its interplay with organismal aging, peritoneal dialysis, and cancer progression. © 2013 Elsevier B.V.


Rybakowski J.K.,Poznan University of Medical Sciences
Journal of Affective Disorders | Year: 2012

Objectives: The reason why depression may respond poorly to treatment with antidepressant drugs may be connected with the features of bipolarity. Evidence to this effect has accumulated in recent studies of various kinds of depression in mood disorders. Additional evidence for such a connection may be the efficacy of mood-stabilizing drugs in the augmentation of antidepressants in treatment-resistant depression. Methods: This review is based on clinical and psychopharmacological research performed over the past five years. The clinical investigation was based on the response to antidepressants of bipolar depression or to symptoms of hypomania, assessed mainly by the Mood Disorder Questionnaire (MDQ) and the Hypomania Checklist-32 (HCL-32). The psychopharmacological research tested the efficacy of augmentation of antidepressants in treatment-resistant depression by mood-stabilizing drugs of the 1st and 2nd generations. Results: A number of studies have pointed to an association between bipolar depression, or symptoms of hypomania and an inadequate response to antidepressants. Such a connection was also found in the Polish TRES-DEP study which included 1051 depressed patients. Pharmacological studies have demonstrated the efficacy of first generation mood-stabilizing drugs (lithium, carbamazepine) and second generation drugs (quetiapine, olanzapine, risperidone, ziprasidone, lamotrigine) for augmentation of antidepressants in treatment-resistant depression. Some evidence has been presented that mixed depressive episodes may also belong to this category. Conclusions: The results of these clinical and psychopharmacological studies appear to confirm an association between bipolarity and a poor response of depression to treatment with antidepressant drugs. © 2011 Elsevier B.V.


Grygiel-Gorniak B.,Poznan University of Medical Sciences
Nutrition Journal | Year: 2014

Peroxisome proliferator-activated receptors are expressed in many tissues, including adipocytes, hepatocytes, muscles and endothelial cells; however, the affinity depends on the isoform of PPAR, and different distribution and expression profiles, which ultimately lead to different clinical outcomes. Because they play an important role in lipid and glucose homeostasis, they are called lipid and insulin sensors. Their actions are limited to specific tissue types and thus, reveal a characteristic influence on target cells. PPARα mainly influences fatty acid metabolism and its activation lowers lipid levels, while PPARγ is mostly involved in the regulation of the adipogenesis, energy balance, and lipid biosynthesis. PPARβ/δ participates in fatty acid oxidation, mostly in skeletal and cardiac muscles, but it also regulates blood glucose and cholesterol levels. Many natural and synthetic ligands influence the expression of these receptors. Synthetic ligands are widely used in the treatment of dyslipidemia (e.g. fibrates - PPARα activators) or in diabetes mellitus (e.g. thiazolidinediones - PPARγ agonists). New generation drugs - PPARα/γ dual agonists - reveal hypolipemic, hypotensive, antiatherogenic, anti-inflammatory and anticoagulant action while the overexpression of PPARβ/δ prevents the development of obesity and reduces lipid accumulation in cardiac cells, even during a high-fat diet. Precise data on the expression and function of natural PPAR agonists on glucose and lipid metabolism are still missing, mostly because the same ligand influences several receptors and a number of reports have provided conflicting results. To date, we know that PPARs have the capability to accommodate and bind a variety of natural and synthetic lipophilic acids, such as essential fatty acids, eicosanoids, phytanic acid and palmitoylethanolamide. A current understanding of the effects of PPARs, their molecular mechanisms and the role of these receptors in nutrition and therapeutic treatment are delineated in this paper. © 2014 Grygiel-Górniak; licensee BioMed Central Ltd.


Rybakowski J.K.,Poznan University of Medical Sciences
CNS Drugs | Year: 2013

Mood stabilizers form a cornerstone in the long-term treatment of bipolar disorder. The first representative of their family was lithium, still considered a prototype drug for the prevention of manic and depressive recurrences in bipolar disorder. Along with carbamazepine and valproates, lithium belongs to the first generation of mood stabilizers, which appeared in psychiatric treatment in the 1960s. Atypical antipsychotics with mood-stabilizing properties and lamotrigine, which were introduced in the mid-1990s, form the second generation of such drugs. The response of patients with bipolar disorder to mood stabilizers has different levels of magnitude. About one-third of lithium-treated patients are excellent responders, showing total prevention of the episodes, and these patients are clinically characterized by an episodic clinical course, complete remission, a bipolar family history, low psychiatric co-morbidity and a hyperthymic temperament. It has been suggested that responders to carbamazepine or lamotrigine may differ clinically from responders to lithium. The main phenotype of the response to mood stabilizers is a degree of prevention against recurrences of manic and depressive episodes during long-term treatment. The most specific scale in this respect is the so-called Alda scale, where retrospective assessment of lithium response is scored on a 0-10 scale. The vast majority of data on genetic influences on the response to mood stabilizers has been gathered in relation to lithium. The studies on the mechanisms of action of lithium and on the neurobiology of bipolar disorder have led to the identification of a number of candidate genes. The genes studied for their association with lithium response have been those connected with neurotransmitters (serotonin, dopamine and glutamate), second messengers (phosphatidyl inositol [PI], cyclic adenosine-monophosphate [cAMP] and protein kinase C [PKC] pathways), substances involved in neuroprotection (brain-derived neurotrophic factor [BDNF] and glycogen synthase kinase 3-β [GSK-3β]) and a number of other miscellaneous genes. There are no published pharmacogenomic studies of mood stabilizers other than lithium, except for one study of the X-box binding protein 1 (XBP1) gene in relation to the efficacy of valproate. In recent years, a number of genome-wide association studies (GWAS) in bipolar disorders have been performed and some of those have also focused on lithium response. They suggest roles for the glutamatergic receptor AMPA (GRIA2) gene and the amiloride-sensitive cation channel 1 neuronal (ACCN1) gene in long-term lithium response. A promise for better elucidating the genetics of lithium response has been created by the formation of the Consortium on Lithium Genetics (ConLiGen) to establish the largest sample, to date, for the GWAS of lithium response in bipolar disorder. The sample currently comprises more than 1,200 patients, characterized by their response to lithium treatment according to the Alda scale. Preliminary results from this international study suggest a possible involvement of the sodium bicarbonate transporter (SLC4A10) gene in lithium response. It is concluded that the pharmacogenetics of response to mood stabilizers has recently become a growing field of research, especially so far as the pharmacogenetics of the response to lithium is concerned. Clearly, the ConLiGen project is a highly significant step in this research. Although the results of pharmacogenetic studies are of significant scientific value, their possible practical implications are yet to be seen. © 2013 The Author(s).


Niedziela M.,Poznan University of Medical Sciences
Best Practice and Research: Clinical Endocrinology and Metabolism | Year: 2014

According to the literature, thyroid nodules (TNs) are quite rare in the first two decades of life and are predominantly non-cancerous, although cancerous TNs are more common in the first two decades of life than in adults. Therefore, it is important for clinicians to distinguish benign from malignant lesions preoperatively because the latter require a total thyroidectomy with or without neck lymph node dissection. A careful work-up and a fine-needle aspiration biopsy (FNAB) are mandatory to improve the preoperative diagnosis. High-resolution thyroid ultrasound and real-time elastosonography are adjuvant presurgical tools in selecting patients for surgery, particularly those with indeterminate or non-diagnostic cytology. Elevated thyroid-stimulating hormone (TSH) level in a patient with a thyroid nodule is a new laboratory predictor of thyroid cancer risk. The majority of thyroid carcinomas derive from the follicular cell, whereas medullary thyroid carcinoma (MTC) derives from calcitonin-producing cells. Patients with MTC are screened for germ-line RET mutations to detect carriers and identify family members for prophylactic or therapeutic thyroidectomy. © 2013 Elsevier Ltd. All rights reserved.

Loading Poznan University of Medical Sciences collaborators
Loading Poznan University of Medical Sciences collaborators