Time filter

Source Type

Powell, United States

Ling C.,Powell Gene Therapy Center | Ling C.,Genetics Institute | Agbandje-McKenna M.,Powell Gene Therapy Center | Agbandje-McKenna M.,Genetics Institute | And 6 more authors.
Human Gene Therapy Methods | Year: 2015

The ubiquitin-proteasome pathway plays a critical role in the intracellular trafficking of recombinant adeno-associated virus 2 (AAV2) vectors, which negatively impacts the transduction efficiency of these vectors. Because ubiquitination occurs on lysine (K) residues, we performed site-directed mutagenesis where we replaced each of 10 surface-exposed K residues (K258, K490, K507, K527, K532, K544, K549, K556, K665, and K706) with glutamic acid (E) because of similarity of size and lack of recognition by modifying enzymes. The transduction efficiency of K490E, K544E, K549E, and K556E scAAV2 vectors increased in HeLa cells in vitro up to 5-fold compared with wild-type (WT) AAV2 vectors, with the K556E mutant being the most efficient. Intravenous delivery of WT and K-mutant ssAAV2 vectors further corroborated these results in murine hepatocytes in vivo. Because AAV8 vectors transduce murine hepatocytes exceedingly well, and because some of the surface-exposed K residues are conserved between these serotypes, we generated and tested two single mutants (K547E and K569E), and one double-mutant (K547 + 569E) AAV8 vector. However, no significant increase in the transduction efficiency of any of these mutant AAV8 vectors was observed in murine hepatocytes in vivo. These studies suggest that although targeting the surface-exposed K residues is yet another strategy to improve the transduction efficiency of AAV vectors, phenotypic outcome is serotype specific. © Copyright 2015 Mary Ann Liebert, Inc.

Mendell J.R.,Ohio State University | Rodino-Klapac L.R.,Ohio State University | Coley B.D.,Ohio State University | Galloway G.,Ohio State University | And 8 more authors.
Annals of Neurology | Year: 2010

Objective: The aim of this study was to attain long-lasting alpha-sarcoglycan gene expression in limb-girdle muscular dystrophy, type 2D (LGMD2D) subjects mediated by adeno-associated virus (AAV) gene transfer under control of a muscle specific promoter (tMCK). Methods: rAAV1.tMCK.hSGCA (3.25 - 10 11 vector genomes) was delivered to the extensor digitorum brevis muscle of 3 subjects with documented SGCA mutations via a double-blind, randomized, placebo controlled trial. Control sides received saline. The blind was not broken until the study was completed at 6 months and all results were reported to the oversight committee. Results: Persistent alpha-sarcoglycan gene expression was achieved for 6 months in 2 of 3 LGMD2D subjects. Markers for muscle fiber transduction other than alpha-sarcoglycan included expression of major histocompatibility complex I, increase in muscle fiber size, and restoration of the full sarcoglycan complex. Mononuclear inflammatory cells recruited to the site of gene transfer appeared to undergo programmed cell death, demonstrated by terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick-end labeling and caspase-3 staining. A patient failing gene transfer demonstrated an early rise in neutralizing antibody titers and T-cell immunity to AAV, validated by enzyme-linked immunospot on the second day after gene injection. This was in clear distinction to other participants with satisfactory gene expression. Interpretation: The findings of this gene replacement study in LGMD2D subjects have important implications not previously demonstrated in muscular dystrophy. Long-term, sustainable gene expression of alpha-sarcoglycan was observed following gene transfer mediated by AAV. The merit of a muscle-specific tMCK promoter, not previously used in a clinical trial, was evident, and the potential for reversal of disease was displayed. ANN NEUROL 2010;68:629-638 © 2010 American Neurological Association.

Ma W.,Powell Gene Therapy Center | Li B.,Powell Gene Therapy Center | Ling C.,Powell Gene Therapy Center | Jayandharan G.R.,Powell Gene Therapy Center | And 7 more authors.
Human Gene Therapy | Year: 2011

We have recently shown that co-administration of conventional single-stranded adeno-associated virus 2 (ssAAV2) vectors with self-complementary (sc) AAV2-protein phosphatase 5 (PP5) vectors leads to a significant increase in the transduction efficiency of ssAAV2 vectors in human cells in vitro as well as in murine hepatocytes in vivo. In the present study, this strategy has been further optimized by generating a mixed population of ssAAV2-EGFP and scAAV2-PP5 vectors at a 10:1 ratio to achieve enhanced green fluorescent protein (EGFP) transgene expression at approximately 5- to 10-fold higher efficiency, both in vitro and in vivo. This simple coproduction method should be adaptable to any ssAAV serotype vector containing transgene cassettes that are too large to be encapsidated in scAAV vectors. © 2011 Mary Ann Liebert, Inc.

Discover hidden collaborations