Entity

Time filter

Source Type


Conesa M.R.,Technical University of Cartagena | Falagan N.,Postharvest and Refrigeration Group | de la Rosa J.M.,Technical University of Cartagena | Aguayo E.,Postharvest and Refrigeration Group | And 2 more authors.
Agricultural Water Management | Year: 2016

The impact of different post-veraison deficit irrigation regimes on yield, berry coloration and bioactive compounds in a commercial vineyard of 'Crimson Seedless' cv. was evaluated during three consecutive years (2011-2013). Four irrigation treatments were assayed: (i) a Control, irrigated at 110% of seasonal crop evapotranspiration (ETc), (ii) regulated deficit irrigation (RDI) irrigated similar to Control levels during pre-veraison and at 50% of the same during post-veraison (a non-critical period); (iii) partial root drying-zone (PRD), irrigated in a similar way to RDI but alternating (every 10-14 days) the dry and wet sides of the root-zone, and (iv) a null irrigation treatment (NI) which only received natural precipitation and occasional supplementary irrigation when the midday stem water potential (Ψs) exceeded -1.2MPa. Total yield and fruit quality at harvest were not significantly affected by RDI or PRD. Only NI led to a reduction in yield and the weight of clusters and berries to compare with the other irrigated counterparts. All deficit irrigation treatments enhanced berry coloration and provided a higher crop yield in the first pick harvest compared with the Control treatment. Although RDI and PRD received similar annual volumes of water, PRD induced a greater accumulation of skin anthocyanins and resveratrol, while increasing the soluble phenolic content and antioxidant capacity evaluated at harvest. However, the higher values of anthocyanins observed in PRD could not be explained by higher values of xylem abscisic acid (ABAxylem) because is the phloem which feeds berries during veraison.. Overall, our results demonstrate a strong relationship between the total amount of water supplied during the growing season and the main parameters related to yield, water use efficiency and bioactive compounds that are beneficial to health. © 2015 Elsevier B.V. Source


Jemni M.,Institute of the Arid Regions Medenine | Oton M.,Technical University of Cartagena | Ramirez J.G.,Postharvest and Refrigeration Group | Artes-Hernandez F.,Technical University of Cartagena | And 5 more authors.
Postharvest Biology and Technology | Year: 2014

Several methods have been used to prevent pest diseases and microbial contamination of dates, although their use is being restricted due to harmful effects on humans and/or to the environment. Sustainable sanitation techniques for keeping overall quality and safety of harvested dates should be developed and implemented. The current work studied the effect of NaClO, UV-C, ozonated water and alkaline and neutral electrolyzed water (NEW) on natural infestation by Ectomyelois ceratoniae or moth of pyrale, and on overall quality of 'Deglet Nour' dates stored for 30 days at the commercially used temperature of 20°C. As controls, untreated samples were used. The skin color, firmness, pH, titratable acidity, total soluble solids content, sugar content, total polyphenols, antioxidant activity, microbial counts, sensory quality and moth infestations were monitored. Phenolics content increased after shelf-life. As expected, all sanitizers lowered microbial counts and moth infestation. A dose of 6kJUV-Cm-2 was the most efficient treatment against yeast and molds (without differences with NaClO and O3), and coliforms, maintaining overall quality of dates after shelf-life. UV-C and NEW (pH 7.2, ORP 814mV, and 300mgL-1 of free chlorine) were the most effective against moth proliferation, and could be considered as promising useful tools for commercial disinfection of fresh dates and extending shelf-life. As far as we know, no other comparative studies on these postharvest sanitizers on dates have been reported. © 2013 Elsevier B.V. Source


Falagan N.,Postharvest and Refrigeration Group | Falagan N.,Institute of Plant Biotechnology | Artes F.,Postharvest and Refrigeration Group | Artes F.,Institute of Plant Biotechnology | And 6 more authors.
Journal of the Science of Food and Agriculture | Year: 2016

BACKGROUND: Biochemical and enzymatic responses to long-term regulated deficit irrigation (RDI) at harvest, during cold storage and after the retail sale period of 'Flordastar' early peaches were evaluated. Irrigation strategies were Control, and two RDI applied during post-harvest period (RDI1, severe; RDI2, moderate), based on different thresholds of maximum daily shrinkage signal intensity (RDI1, 1.4 to dry; RDI2, 1.3 to 1.6). RESULTS: Both RDI provoked stress in the plant. This meant higher antioxidant concentration [averaging 1.30±0.27g ascorbic acid equivalents (AAE) kg-1 fresh weight (FW) for control and 1.77±0.35 and 1.50±0.30g AAE kg-1 FW for RDI1 and RDI2, respectively]. Antioxidant levels decreased with storage by polyphenoloxydase action, which increased (from 0.04±0.01 U mg-1 protein to 0.32±0.08 U mg-1 protein). Vitamin C was initially higher in RDI samples (44.22±0.05g total vitamin C kg-1 FW for control vs. 46.77±0.02 and 46.27±0.03g total vitamin C kg-1 FW for RDI1 and RDI2, respectively). CONCLUSION: The way RDI was applied affected bioactive fruit composition, being catalase and dehydroascorbic acid good water stress indicators. RDI strategies can be used as field practice, allowing water savings while enhanced healthy compound content in early peaches. © 2015 Society of Chemical Industry. Source

Discover hidden collaborations